A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion

被引:54
作者
Eun, Youngkee [1 ]
Kwon, Dae-Sung [1 ]
Kim, Min-Ook [1 ]
Yoo, Ilseon [1 ]
Sim, Jaesam [1 ]
Ko, Hee-Jin [1 ]
Cho, Kyung-Ho [2 ]
Kim, Jongbaeg [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[2] Agcy Def Dev, Taejon 305152, South Korea
关键词
hybrid energy harvester; strain energy harvesting; piezoelectric; electrostatic; NANOGENERATOR; ELECTRICITY; GENERATION;
D O I
10.1088/0964-1726/23/4/045040
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A new design of flexible energy harvester to utilize piezoelectric and electrostatic energy conversion mechanisms simultaneously from a single mechanical energy source is proposed. This non-resonant type harvester enables low-frequency mechanical inputs to be converted to electricity, and the polymeric structures make the harvester mechanically flexible, allowing it to be applied to non-planar surfaces. The fabricated harvester generated peak-and average power densities of 159 and 1.79 mu W cm(-2) respectively by piezoelectric conversion, and 52.9 mu W cm(-2) and 1.59 nW cm(-2) respectively by electrostatic conversion from an input force of 1.2 N at 3 Hz. Considering its flexibility and ability to harvest mechanical inputs at frequencies below 3 Hz, low-frequency human movements could be a potential energy source for the proposed hybrid harvester to exploit.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] Wind energy technology and current status:: a review
    Ackermann, T
    Söder, L
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2000, 4 (04) : 315 - 374
  • [2] Spherical, rolling magnet generators for passive energy harvesting from human motion
    Bowers, Benjamin J.
    Arnold, David P.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (09)
  • [3] "Soft Si": Effective Stiffness of Supported Crystalline Nanomembranes
    Cavallo, Francesca
    Grierson, David S.
    Turner, Kevin T.
    Lagally, Max G.
    [J]. ACS NANO, 2011, 5 (07) : 5400 - 5407
  • [4] Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency
    Chang, Chieh
    Tran, Van H.
    Wang, Junbo
    Fuh, Yiin-Kuen
    Lin, Liwei
    [J]. NANO LETTERS, 2010, 10 (02) : 726 - 731
  • [5] Liquid-based electrostatic energy harvester with high sensitivity to human physical motion
    Choi, Dong-Hoon
    Han, Chang-Hoon
    Kim, Hyun-Don
    Yoon, Jun-Bo
    [J]. SMART MATERIALS AND STRUCTURES, 2011, 20 (12)
  • [6] Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility
    Fuard, D.
    Tzvetkova-Chevolleau, T.
    Decossas, S.
    Tracqui, P.
    Schiavone, P.
    [J]. MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) : 1289 - 1293
  • [7] Energy harvesting from a backpack instrumented with piezoelectric shoulder straps
    Granstrom, Jonathan
    Feenstra, Joel
    Sodano, Henry A.
    Farinholt, Kevin
    [J]. SMART MATERIALS & STRUCTURES, 2007, 16 (05) : 1810 - 1820
  • [8] Energy harvesting: State-of-the-art
    Harb, Adnan
    [J]. RENEWABLE ENERGY, 2011, 36 (10) : 2641 - 2654
  • [9] Khbeis M., 2009, 15th International Conference on Solid-State Sensors, Actuators and Microsystems. Transducers 2009, P525, DOI 10.1109/SENSOR.2009.5285377
  • [10] Dielectric Elastomer Generators: How Much Energy Can Be Converted?
    Koh, Soo Jin Adrian
    Keplinger, Christoph
    Li, Tiefeng
    Bauer, Siegfried
    Suo, Zhigang
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2011, 16 (01) : 33 - 41