Optimal Balance of Privacy and Utility with Differential Privacy Deep Learning Frameworks

被引:3
|
作者
Kotevska, Olivera [1 ]
Alamudun, Folami [1 ]
Stanley, Christopher [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math, Oak Ridge, TN 37830 USA
来源
2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021) | 2021年
关键词
privacy; personal data; differential privacy; deep neural network;
D O I
10.1109/CSCI54926.2021.00141
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the number of online services has increased, the amount of sensitive data being recorded is rising. Simultaneously, the decision-making process has improved by using the vast amounts of data, where machine learning has transformed entire industries. This paper addresses the development of optimal private deep neural networks and discusses the challenges associated with this task. We focus on differential privacy implementations and finding the optimal balance between accuracy and privacy, benefits and limitations of existing libraries, and challenges of applying private machine learning models in practical applications. Our analysis shows that learning rate, and privacy budget are the key factors that impact the results, and we discuss options for these settings.
引用
收藏
页码:425 / 430
页数:6
相关论文
共 50 条
  • [1] Differential privacy in deep learning: Privacy and beyond
    Wang, Yanling
    Wang, Qian
    Zhao, Lingchen
    Wang, Cong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 408 - 424
  • [2] When Deep Learning Meets Differential Privacy: Privacy,Security, and More
    Li, Xinyan
    Chen, Yufei
    Wang, Cong
    Shen, Chao
    IEEE NETWORK, 2021, 35 (06): : 148 - 155
  • [3] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [4] Differential privacy in deep learning: A literature survey
    Pan, Ke
    Ong, Yew-Soon
    Gong, Maoguo
    Li, Hui
    Qin, A. K.
    Gao, Yuan
    NEUROCOMPUTING, 2024, 589
  • [5] Analysing Utility Loss in Federated Learning with Differential Privacy
    Pustozerova, Anastasia
    Baumbach, Jan
    Mayer, Rudolf
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1230 - 1235
  • [6] Privacy vs Utility analysis when applying Differential Privacy on Machine Learning Classifiers
    Selvarathnam, Mathuranthagaa
    Ragel, Roshan
    Reyes-Aldasoro, Constantino Carlos
    Rajarajan, Muttukrishnan
    2023 19TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB, 2023, : 306 - 311
  • [7] Optimal Distribution of Privacy Budget in Differential Privacy
    Bkakria, Anis
    Tasidou, Aimilia
    Cuppens-Boulahia, Nora
    Cuppens, Frederic
    Bouattour, Fatma
    Ben Fredj, Feten
    RISKS AND SECURITY OF INTERNET AND SYSTEMS, 2019, 11391 : 222 - 236
  • [8] A Pragmatic Privacy-Preserving Deep Learning Framework Satisfying Differential Privacy
    Dang T.K.
    Tran-Truong P.T.
    SN Computer Science, 5 (1)
  • [9] Utility Optimal Model for Differential Privacy Based on the Rate Distortion
    Wu N.-B.
    Peng C.-G.
    Tian Y.-L.
    Niu K.
    Ding H.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (08): : 1463 - 1478
  • [10] Maintaining Privacy in Medical Imaging with Federated Learning, Deep Learning, Differential Privacy, and Encrypted Computation
    Shah, Unnati
    Dave, Ishita
    Malde, Jeel
    Mehta, Jalpa
    Kodeboyina, Srikanth
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,