Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries

被引:125
作者
Chen, Weihua [1 ,2 ]
Qi, Shihan [1 ]
Guan, Linquan [1 ]
Liu, Chuntai [2 ]
Cui, Shizhong [3 ]
Shen, Changyu [2 ]
Mi, Liwei [3 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Natl Engn & Res Ctr, Adv Polymer Proc Technol, Zhengzhou 450001, Peoples R China
[3] Zhongyuan Univ Technol, Ctr Adv Mat Res, Zhengzhou 450007, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE; HIGH-CAPACITY; CYCLING STABILITY; ROOM-TEMPERATURE; CATHODE MATERIAL; ANODE MATERIALS; PERFORMANCE; LITHIUM; CARBON; NANOSPHERES;
D O I
10.1039/c7ta00114b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pyrite, FeS2, is a promising sodium battery electrode candidate owing to its abundance in natural resources; however, it suffers from poor cyclic performance and poor rate performance, which hinders its large-scale commercial application. The semiconductor nature of pyrite as well as the dissolution of polysulfide and the destruction of the morphology of pyrite during the charge/discharge process are the main reasons for the abovementioned two drawbacks. In this study, a well-designed FeS2/rGO-A composite was constructed using an ambient temperature reaction. The introduction of rGO-A improved the conductivity of the entire material without hindering sodium ion diffusion; it also confined the pulverized active material to prevent its loss. Additionally, by controlling the cutoff voltage above 0.8 V, the formation of polysulfide was avoided. As a result, the FeS2/rGO-A electrode displays both excellent cyclic performance (low decay rate of 0.051% per cycle over 800 cycles at 1C) and rate performance (more than 70% discharge capacity is retained at 5C compared to 0.1C). The unique electrochemical mechanism was also investigated in detail. A new perspective of pyrite electrochemical behavior was obtained. This study provides not only a theoretical basis for further study, but may also enable the large-scale commercial application of sodium-ion batteries.
引用
收藏
页码:5332 / 5341
页数:10
相关论文
共 55 条
[1]   Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Lyu, Feiyi ;
Wang, Fuxin ;
Yang, Hao ;
Li, Haibo ;
Liang, Chaolun ;
Huang, Miao ;
Huang, Yongchao ;
Tong, Yexiang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (15) :9733-9744
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
CHEMICAL COMMUNICATIONS, 2011, 47 (14) :4252-4254
[4]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[5]   Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries [J].
Douglas, Anna ;
Carter, Rachel ;
Oakes, Landon ;
Share, Keith ;
Cohn, Adam P. ;
Pint, Cary L. .
ACS NANO, 2015, 9 (11) :11156-11165
[6]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[7]   Ionic Liquid Enabled FeS2 for High-Energy-Density Lithium-Ion Batteries [J].
Evans, Tyler ;
Piper, Daniela Molina ;
Kim, Seul Cham ;
Han, Sang Sub ;
Bhat, Vinay ;
Oh, Kyu Hwan ;
Lee, Se-Hee .
ADVANCED MATERIALS, 2014, 26 (43) :7386-7392
[8]   Routes to High Energy Cathodes of Sodium-Ion Batteries [J].
Fang, Chun ;
Huang, Yunhui ;
Zhang, Wuxing ;
Han, Jiantao ;
Deng, Zhe ;
Cao, Yuliang ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[9]   NaV6O15 Nanoflakes with Good Cycling Stability as a Cathode for Sodium Ion Battery [J].
He, Hanna ;
Zeng, Xianguang ;
Wang, Haiyan ;
Chen, Na ;
Sun, Dan ;
Tang, Yougen ;
Huang, Xiaobing ;
Pan, Yingfen .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (01) :A39-A43
[10]   Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries [J].
He, Hanna ;
Jin, Guanhua ;
Wang, Haiyan ;
Huang, Xiaobing ;
Chen, Zehua ;
Sun, Dan ;
Tang, Yougen .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) :3563-3570