On an eigenvalue problem involving variable exponent growth conditions

被引:3
作者
Costea, Nicusor [1 ]
Mihailescu, Mihai [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
The Laplace operator; Variable exponent growth conditions; Eigenvalue problem; Principal eigenvalue; Banach fixed point theorem; P(X)-LAPLACIAN DIRICHLET PROBLEM; ELECTRORHEOLOGICAL FLUIDS; SOBOLEV SPACES; MULTIPLICITY; EXISTENCE; OPERATOR;
D O I
10.1016/j.na.2009.02.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem -Delta u - epsilon div((1 + vertical bar del u vertical bar(2))p(x)-2/2 del u) = lambda(u + epsilon) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N, p (Omega) over bar -> (1, 2) is a continuous function and X and F are two positive constants. We prove that for any epsilon > 0 each) lambda is an element of (0, lambda(1)) is an eigenvalue of the above problem, where Omega is the principal eigenvalue of the Laplace operator on Q. Moreover, for each eigenvalue lambda is an element of (0, lambda(1)) it corresponds a unique eigenfunction. The proofs will be based on the Banach fixed point theorem combined with adequate variational techniques. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4271 / 4278
页数:8
相关论文
共 24 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[3]  
[Anonymous], 1992, THEORIE APPL
[4]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[5]  
[Anonymous], 2002, Electrorheological Fluids: Modeling and Mathematical Theory
[6]  
[Anonymous], 1987, Math. USSR, DOI DOI 10.1070/IM1987V029N01ABEH000958
[7]  
[Anonymous], 2002, THESIS U FRIEBURG GE
[8]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[9]   Remarks on eigenvalue problems involving the p(x)-Laplacian [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :85-98
[10]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852