A Hierarchical, Data-Driven Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell Variability

被引:25
|
作者
Loos, Carolin [1 ,2 ]
Moeller, Katharina [3 ]
Froehlich, Fabian [1 ,2 ]
Hucho, Tim [3 ]
Hasenauer, Jan [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, D-85748 Garching, Germany
[3] Univ Hosp Cologne, Div Expt Anesthesiol & Pain Res, Dept Anesthesiol & Intens Care Med, D-50937 Cologne, Germany
关键词
BAYES FACTORS; DIFFERENTIAL EXPRESSION; PARAMETER-ESTIMATION; GENE-EXPRESSION; CYTOMETRY DATA; HETEROGENEITY; DYNAMICS; SUBPOPULATIONS; SELECTION; BIOLOGY;
D O I
10.1016/j.cels.2018.04.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All biological systems exhibit cell-to-cell variability. Frameworks exist for understanding how stochastic fluctuations and transient differences in cell state contribute to experimentally observable variations in cellular responses. However, current methods do not allow identification of the sources of variability between and within stable subpopulations of cells. We present a data-driven modeling framework for the analysis of populations comprising heterogeneous subpopulations. Our approach combines mixture modeling with frameworks for distribution approximation, facilitating the integration of multiple single-cell datasets and the detection of causal differences between and within subpopulations. The computational efficiency of our framework allows hundreds of competing hypotheses to be compared. We initially validate our method using simulated data with an understood ground truth, then we analyze data collected using quantitative single-cell microscopy of cultured sensory neurons involved in pain initiation. This approach allows us to quantify the relative contribution of neuronal subpopulations, culture conditions, and expression levels of signaling proteins to the observed cell-to-cell variability in NGF/TrkA-initiated Erk1/2 signaling.
引用
收藏
页码:593 / +
页数:24
相关论文
共 50 条
  • [1] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Tian, Yu
    Zheng, Ruiqing
    Liang, Zhenlan
    Li, Suning
    Wu, Fang-Xiang
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 772 - 789
  • [2] Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations
    Usaj, Mojca Mattiazzi
    Yeung, Clarence Hue Lok
    Friesen, Helena
    Boone, Charles
    Andrews, Brenda J.
    CELL SYSTEMS, 2021, 12 (06) : 608 - 621
  • [3] Non-Markovian data-driven modeling of single-cell motility
    Mitterwallner, Bernhard G.
    Schreiber, Christoph
    Daldrop, Jan O.
    Raedler, Joachim O.
    Netz, Roland R.
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [4] Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability
    Mattiazzi Usaj, Mojca
    Sahin, Nil
    Friesen, Helena
    Pons, Carles
    Usaj, Matej
    Masinas, Myra Paz D.
    Shuteriqi, Ermira
    Shkurin, Aleksei
    Aloy, Patrick
    Morris, Quaid
    Boone, Charles
    Andrews, Brenda J.
    MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (02)
  • [5] Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection
    Heldt, Frank S.
    Kupke, Sascha Y.
    Dorl, Sebastian
    Reichl, Udo
    Frensing, Timo
    NATURE COMMUNICATIONS, 2015, 6
  • [6] Combined Single-Cell Manipulation and Chemomechanical Modeling to Probe Cell Migration Mechanism During Cell-to-Cell Interaction
    Gou, Xue
    Yang, Hao
    Sun, Dong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (05) : 1474 - 1482
  • [7] A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex
    Huuki-Myers, Louise A.
    Spangler, Abby
    Eagles, Nicholas J.
    Montgomery, Kelsey D.
    Kwon, Sang Ho
    Guo, Boyi
    Grant-Peters, Melissa
    Divecha, Heena R.
    Tippani, Madhavi
    Sriworarat, Chaichontat
    Nguyen, Annie B.
    Ravichandran, Prashanthi
    Tran, Matthew N.
    Seyedian, Arta
    Hyde, Thomas M.
    Kleinman, Joel E.
    Battle, Alexis
    Page, Stephanie C.
    Ryten, Mina
    Hicks, Stephanie C.
    Martinowich, Keri
    Collado-Torres, Leonardo
    Maynard, Kristen R.
    SCIENCE, 2024, 384 (6698)
  • [8] Experimental analysis and modeling of single-cell time-course data
    Bijman, Eline Yafele
    Kaltenbach, Hans-Michael
    Stelling, Jorg
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 28
  • [9] Origins of Cell-to-Cell Bioprocessing Diversity and Implications of the Extracellular Environment Revealed at the Single-Cell Level
    Vasdekis, A. E.
    Silverman, A. M.
    Stephanopoulos, G.
    SCIENTIFIC REPORTS, 2015, 5
  • [10] Fast and precise single-cell data analysis using a hierarchical autoencoder
    Tran, Duc
    Nguyen, Hung
    Tran, Bang
    La Vecchia, Carlo
    Luu, Hung N.
    Nguyen, Tin
    NATURE COMMUNICATIONS, 2021, 12 (01)