Delayed thermalization in the mass-deformed Sachdev-Ye-Kitaev model

被引:16
作者
Nandy, Dillip Kumar [1 ]
Cadez, Tilen [1 ]
Dietz, Barbara [1 ]
Andreanov, Alexei [1 ,2 ]
Rosa, Dario [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[2] Korea Univ Sci & Technol UST, Basic Sci Program, Daejeon 34113, South Korea
关键词
STATISTICAL-MECHANICS; QUANTUM; LOCALIZATION; SYSTEM; CHAOS;
D O I
10.1103/PhysRevB.106.245147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the thermalizing properties of the mass-deformed Sachdev-Ye-Kitaev model, in a regime of param-eters where the eigenstates are ergodically extended over just portions of the full Fock space, as an all-to-all toy model of many-body localization (MBL). Our numerical results strongly support the hypothesis that, although considerably delayed, thermalization is still present in this regime. Our results add to recent studies indicating that MBL should be interpreted as a strict Fock-space localization.
引用
收藏
页数:10
相关论文
共 72 条
[1]   Distinguishing localization from chaos: Challenges in finite-size systems [J].
Abanin, D. A. ;
Bardarson, J. H. ;
De Tomasi, G. ;
Gopalakrishnan, S. ;
Khemani, V ;
Parameswaran, S. A. ;
Pollmann, F. ;
Potter, A. C. ;
Serbyn, M. ;
Vasseur, R. .
ANNALS OF PHYSICS, 2021, 427
[2]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[3]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]   Joint probability densities of level spacing ratios in random matrices [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Vivo, P. ;
Vivo, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (35)
[6]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[7]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[8]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[9]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[10]   Spectral Statistics in Spatially Extended Chaotic Quantum Many-Body Systems [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW LETTERS, 2018, 121 (06)