A FAMILY OF FINITE GELFAND PAIRS ASSOCIATED WITH WREATH PRODUCTS

被引:3
作者
Benson, Chal [1 ]
Ratcliff, Gail [1 ]
机构
[1] East Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
finite Gelfand pair; wreath product;
D O I
10.4064/cm7249-8-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the wreath product G(n) = Gamma(n) (sic) S-n of a finite group Gamma with the symmetric group S-n. Let Delta(n) denote the diagonal in Gamma(n). Then K-n = Delta(n) x S-n forms a subgroup of G(n). In case Gamma is abelian, (G(n), K-n) forms a Gelfand pair with relevance to the study of parking functions. For Gamma non-abelian it was suggested by Kursat Aker and Mahir Bilen Can that (G(n), K-n) must fail to be a Gelfand pair for n sufficiently large. We prove that this is indeed the case: for F non-abelian there is some integer 2 < N(Gamma) <= vertical bar Gamma vertical bar for which (K-n, G(n)) is a Gelfand pair for all n < N(Gamma) but (K-n, G(n)) fails to be a Gelfand pair for all n >= N(Gamma). For dihedral groups Gamma = D-p, with p an odd prime we prove that N(Gamma) = 6.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 8 条
[1]   Orthogonal polynomials arising from the wreath products of a dihedral group with a symmetric group [J].
Akazawa, H ;
Mizukawa, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 104 (02) :371-380
[2]   FROM PARKING FUNCTIONS TO GELFAND PAIRS [J].
Aker, Kursat ;
Can, Mahir Bilen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) :1113-1124
[3]  
Ceccherini-Silberstein T., 2014, LONDON MATH SOC LECT, V401
[4]   Trees, wreath products and finite Gelfand pairs [J].
Ceccherini-Silberstein, Tullio ;
Scarabotti, Fabio ;
Tolli, Filippo .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :503-537
[5]  
CeccheriniSilberstein T, 2008, CAM ST AD M, V108, P1, DOI 10.1017/CBO9780511619823
[6]  
Macdonald I. G., 1995, Oxford Mathematical Monographs, V2nd
[7]   INVARIANTS OF FINITE-GROUPS AND THEIR APPLICATIONS TO COMBINATORICS [J].
STANLEY, RP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :475-511
[8]  
Terras A., 1999, LONDON MATH SOC STUD, V43