Diffusion flame synthesis of hollow, anatase TiO2 nanoparticles

被引:15
|
作者
Karan, N. S. [1 ]
Agrawal, A.
Pandey, P. K. [1 ]
Smitha, P. [1 ]
Sharma, S. J. [2 ]
Mishra, D. P. [3 ]
Gajbhiye, N. S. [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India
[2] SK Porwal Coll, Dept Elect, Nagpur 441002, Maharashtra, India
[3] Indian Inst Technol, Dept Aerosp Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Nanotitania; Flame synthesis; Electron microscopy; TITANIA PARTICLES; MORPHOLOGY; POWDERS; REACTOR; SIO2;
D O I
10.1016/j.mseb.2009.05.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Well defined, dense, hollow spheres of anatase titania (TiO2.) nanoparticles were produced from TiCl4 (as precursor) by diffusion flame technique. Flow rates of gases (LPG/air/N-2 compositions) were found to affect particle size. Titania nanoparticles were observed to decrease from 19 to 8 nm when the air flow rates were increased from 20 to 25 lpm. However, the particle size was found to increase from 15 to 21 nm when the nitrogen flow rate was increased from 0.8 to 2.0 lpm. LPG has been used as fuel. The increase in particle size of anatase TiO2 was due to higher flame height and temperature. The anatase (TiO2) phase was predominant compare to rutile phase in the ratio of 74:26 using air as an oxidant. In the gas phase reaction, the nanoparticles formation occurs due to spontaneous increase of number density of nuclei. The coagulation or aggregation of particles leads to the formation of larger particles due to higher chances of collisions among the particles and sintering at high flame temperature. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 133
页数:6
相关论文
共 50 条
  • [1] Synthesis and morphology of anatase and η-TiO2 nanoparticles
    E. V. Savinkina
    G. M. Kuz’micheva
    N. Yu. Tabachkova
    L. N. Obolenskaya
    P. A. Demina
    A. G. Yakovenko
    Inorganic Materials, 2011, 47 : 489 - 494
  • [2] Synthesis and Morphology of Anatase and η-TiO2 Nanoparticles
    Savinkina, E. V.
    Kuz'micheva, G. M.
    Tabachkova, N. Yu.
    Obolenskaya, L. N.
    Demina, P. A.
    Yakovenko, A. G.
    INORGANIC MATERIALS, 2011, 47 (05) : 489 - 494
  • [3] Synthesis and characterization of pure anatase TiO2 nanoparticles
    B. S. Shirke
    P. V. Korake
    P. P. Hankare
    S. R. Bamane
    K. M. Garadkar
    Journal of Materials Science: Materials in Electronics, 2011, 22 : 821 - 824
  • [4] Thermal stability of flame-synthesized anatase TiO2 nanoparticles
    McCormick, JR
    Zhao, B
    Rykov, SA
    Wang, H
    Chen, JGG
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (45): : 17398 - 17402
  • [5] Synthesis and characterization of pure anatase TiO2 nanoparticles
    Shirke, B. S.
    Korake, P. V.
    Hankare, P. P.
    Bamane, S. R.
    Garadkar, K. M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (07) : 821 - 824
  • [6] Controllable synthesis of hexagonal prism and hollow anatase TiO2 microstructures
    Key Lab. Photochem. Conversion and Optoelectron. Mater., Technical Inst. Phys. Chem., CAS, Beijing 100190, China
    不详
    Guocheng Gongcheng Xuebao, 2008, 6 (1233-1236):
  • [7] Thermal stability of flame-synthesized anatase TiO2 nanoparticles.
    Chen, JGG
    McCormick, JR
    Zhou, B
    Wang, H
    Rykov, SA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U536 - U536
  • [8] Synthesis of anatase TiO2 nanoparticles with β-cyclodextrin as a supramolecular shell
    Li, Landong
    Sun, Xiaohong
    Yang, Yali
    Guan, Naijia
    Zhang, Fuxiang
    CHEMISTRY-AN ASIAN JOURNAL, 2006, 1 (05) : 664 - 668
  • [9] Hollow anatase TiO2 nanoparticles with excellent catalytic activity for dichloromethane combustion
    Huang, Haifeng
    Zhang, Xixiong
    Jiang, Xiaojia
    Dou, Kang
    Ni, Zhiyi
    Lu, Hanfeng
    RSC ADVANCES, 2016, 6 (66) : 61610 - 61614
  • [10] Synthesis and characterization of TiO2 nanoparticles:: anatase, brookite, and rutile
    Reyes-Coronado, David
    Rodriguez-Gattorno, Geonel
    Espinosa-Pesqueira, Manuel
    Gardner, James M.
    Meyer, Gerald J.
    Oskam, Gerko
    SOLAR HYDROGEN AND NANOTECHNOLOGY II, 2007, 6650