Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis

被引:83
作者
Siracusano, S. [1 ]
Baglio, V. [1 ]
Stassi, A. [1 ]
Merlo, L. [2 ]
Moukheiber, E. [2 ]
Arico', A. S. [1 ]
机构
[1] CNR ITAE, I-98126 Messina, Italy
[2] Solvay Specialty Polymers Italy SpA, I-20021 Bollate, Italy
关键词
Water electrolysis; Aquivion (R); Short-side-chain; Ir-oxide; Pt electrocatalyst; PERFLUORINATED IONOMER; FUEL-CELLS; ELECTROCHEMICAL CHARACTERIZATION; OXYGEN EVOLUTION; HYDROGEN; ELECTROCATALYSIS; ION; ASSEMBLIES; OPERATION; OXIDE;
D O I
10.1016/j.memsci.2014.04.030
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An Aquivion (R) E87-12 S short-side-chain perfluorosulfonic acid (SSC-PFSA) membrane with equivalent weight (EW) of 870 g/eq and 120 mu m thickness produced by Solvay Specialty Polymers was tested in a polymer electrolyte membrane water electrolyzer (PEMWE). For comparison, a benchmark Nafion N115 membrane (EW 1100 g/eq) of similar thickness was investigated under similar operating conditions. Both membranes were tested in conjunction with in-house prepared unsupported IrO2 anode and carbon-supported Pt cathode electrocatalysts. The electrocatalysts consisted of nanosized IrO2 and Pt particles (particle size similar to 2-4 nm). Electrochemical tests showed better water splitting performance for the Aquivion (R) membrane and ionomer based membrane-electrode assembly (MEA) as compared to Nafion (R). Lower ohmic drop constraints and smaller polarization resistance were observed for the electrocatalyst-Aquivion (R) ionomer interface indicating a better catalyst-electrolyte interface. A current density of 3.2 A cm(-2) for water electrolysis was recorded at 1.8 V cell voltage and 90 C with the Aquivion (R) based MEA. Some performance decay with time was observed indicating that the system requires further optimization of the interface characteristics. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 32 条
  • [1] High performance perfluoropolymer films and membranes
    Arcella, V
    Ghielmi, A
    Tommasi, G
    [J]. ADVANCED MEMBRANE TECHNOLOGY, 2003, 984 : 226 - 244
  • [2] Hyflon ion membranes for fuel cells
    Arcella, V
    Troglia, C
    Ghielmi, A
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) : 7646 - 7651
  • [3] Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells
    Arico, A. S.
    Baglio, V.
    Di Blasi, A.
    Antonucci, V.
    Cirillo, L.
    Ghielmi, A.
    Arcella, V.
    [J]. DESALINATION, 2006, 199 (1-3) : 271 - 273
  • [4] Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources
    Arico, A. S.
    Siracusano, S.
    Briguglio, N.
    Baglio, V.
    Di Blasi, A.
    Antonucci, V.
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) : 107 - 118
  • [5] High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane
    Arico, A. S.
    Di Blasi, A.
    Brunaccini, G.
    Sergi, F.
    Dispenza, G.
    Andaloro, L.
    Ferraro, M.
    Antonucci, V.
    Asher, P.
    Buche, S.
    Fongalland, D.
    Hards, G. A.
    Sharman, J. D. B.
    Bayer, A.
    Heinz, G.
    Zandona, N.
    Zuber, R.
    Gebert, M.
    Corasaniti, M.
    Ghielmi, A.
    Jones, D. J.
    [J]. FUEL CELLS, 2010, 10 (06) : 1013 - 1023
  • [6] Arico A.S., 2012, FCH JU PROGR REV DAY
  • [7] PEM electrolysis for production of hydrogen from renewable energy sources
    Barbir, F
    [J]. SOLAR ENERGY, 2005, 78 (05) : 661 - 669
  • [8] A comprehensive review on PEM water electrolysis
    Carmo, Marcelo
    Fritz, David L.
    Merge, Juergen
    Stolten, Detlef
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) : 4901 - 4934
  • [9] Cruz JC, 2012, INT J ELECTROCHEM SC, V7, P7866
  • [10] Composite materials for electrocatalysis of O2 evolution:: IrO2+SnO2 in acid solution
    De Pauli, CP
    Trasatti, S
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 538 : 145 - 151