Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring

被引:50
|
作者
Ozbey, Burak [1 ]
Unal, Emre [1 ]
Ertugrul, Hatice [1 ]
Kurc, Ozgur [2 ]
Puttlitz, Christian M. [3 ]
Erturk, Vakur B. [1 ]
Altintas, Ayhan [1 ]
Demir, Hilmi Volkan [1 ,4 ]
机构
[1] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Civil Engn, TR-06800 Ankara, Turkey
[3] Colorado State Univ, Dept Clin Sci, Sch Biomed Engn, Dept Mech Engn, Ft Collins, CO 80523 USA
[4] Nanyang Technol Univ, Sch Phys & Math Sci, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
displacement sensor; metamaterial; structural health monitoring;
D O I
10.3390/s140101691
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-field excitation response, which is highly sensitive to the displaced comb-teeth over a wide separation, the wireless sensing system exhibits a relatively high resolution (<1 mu m) and a large dynamic range (over 7 mm), along with high levels of linearity (R-2 > 0.99 over 5 mm) and sensitivity (>12.7 MHz/mm in the 1-3 mm range). The sensor is also shown to be working in the linear region in a scenario where it is attached to a standard structural reinforcing bar. Because of its wireless and passive nature, together with its low cost, the proposed system enabled by the metamaterial probes holds a great promise for applications in remote structural health monitoring.
引用
收藏
页码:1691 / 1704
页数:14
相关论文
共 50 条
  • [31] RFID Based Sensing for Structural Health Monitoring
    Mateusz, Lisowski
    Tadeusz, Uhl
    DAMAGE ASSESSMENT OF STRUCTURES X, PTS 1 AND 2, 2013, 569-570 : 1178 - 1185
  • [32] Towards Long-Term Monitoring of the Structural Health of Deep Rock Tunnels with Remote Sensing Techniques
    Frenelus, Wadslin
    Peng, Hui
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2023, 66 (66): : 56 - 87
  • [33] Some practical issues in remote structural health monitoring
    Han, L
    Newhook, JP
    Mufti, AA
    Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005, 5767 : 187 - 194
  • [34] IoT enabled diagnosis and prognosis framework for structural health monitoring
    Kumar P.
    Kota S.R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (08) : 11301 - 11318
  • [35] A wireless structural health monitoring system in civil engineering
    Pei, Q
    Guo, X
    Zhao, CY
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING: NEW FRONTIER AND RESEARCH TRANSFORMATION, 2004, : 926 - 932
  • [36] An overview of wireless structural health monitoring for civil structures
    Lynch, Jerome Peter
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1851): : 345 - 372
  • [37] Edge Structural Health Monitoring (E-SHM) Using Low-Power Wireless Sensing
    Buckley, Tadhg
    Ghosh, Bidisha
    Pakrashi, Vikram
    SENSORS, 2021, 21 (20)
  • [38] Remote Monitoring of Building Structural Integrity by a Smart Wireless Sensor Network
    Morello, R.
    De Capua, C.
    Meduri, A.
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [39] Active Wireless System for Structural Health Monitoring Applications
    Perera, Ricardo
    Perez, Alberto
    Garcia-Dieguez, Marta
    Luis Zapico-Valle, Jose
    SENSORS, 2017, 17 (12)
  • [40] A wireless smart PVDF sensor for structural health monitoring
    Gu, H
    Zhao, Y
    Wang, ML
    STRUCTURAL CONTROL & HEALTH MONITORING, 2005, 12 (3-4) : 329 - 343