The maximal size of the k-fold divisor function for very large k

被引:0
作者
Pollack, Paul [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(k)(n) denote the number of ways of writing n as an (ordered) product of k positive integers. When k = 2, Wigert proved in 1907 that log d(k)(n) <= (1 +o(1)) log k log n/log log n (n -> infinity). (*) In 1992, Norton showed that (*) holds whenever k = o(log n); this is sharp, since (*) holds with equality when n is a product of the first several primes. In this note, we determine the maximal size of log d(k)(n) when k >> log n. To illustrate: Let kappa > 0 be fixed, and let k, n -> infinity in such a way that k/ log n -> kappa; then log d(k)(n) <= ( s + kappa Sigma(p prime) Sigma(l >= 1)1/lpls + o(1) ) log n, where s > 1 is implicitly defined by Sigma(p prime) log p/p(s) -1 = 1/kappa. Moreover, this upper bound is optimal for every value of kappa. Our results correct and improve on recent work of Fedorov.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 16 条
[1]  
Babanazarov B., 1987, IZV AKAD NAUK UZ FMN, V93, P18
[2]  
Chubarikov VN, 2015, STUD SYST DECIS CONT, V30, P29, DOI 10.1007/978-3-319-19075-4_3
[3]  
Drozdova AA., 1958, ELABU GOS PED I U EN, V3, P160
[4]  
Duras JL, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P743
[5]  
Fedorov G. V., 2013, DOKL AKAD NAUK, V452, P141, DOI 10.7868/S0869565213270042
[6]  
Fedorov GV, 2013, MATH MONTISNIGRI, V28, P17
[7]   MAXIMAL ORDER OF PRIME-NUMBER INDEPENDENT MULTIPLICATIVE FUNCTIONS [J].
HEPPNER, E .
ARCHIV DER MATHEMATIK, 1973, 24 (01) :63-66
[8]  
Nicolas J.-L., 1980, STUD SCI MATH HUNG, V15, P71
[9]   UPPER-BOUNDS FOR SUMS OF POWERS OF DIVISOR FUNCTIONS [J].
NORTON, KK .
JOURNAL OF NUMBER THEORY, 1992, 40 (01) :60-85
[10]  
Pillai S. S., 1944, J INDIAN MATH SOC, V8, P61