Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type

被引:37
作者
Vazquez, Juan Luis [1 ]
Volzone, Bruno [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Napoli Parthenope, Fac Ingn, Dipartimento Tecnol, I-80143 Naples, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 05期
关键词
Symmetrization; Fractional Laplacian; Nonlocal elliptic and parabolic equations; Comparison theorems; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.matpur.2013.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish symmetrization results for the solutions of the linear fractional diffusion equation arts (-Delta)(sigma/2)u = f and its elliptic counterpart hv + (-Delta)(sigma/2)v = f, h > 0, using the concept of comparison of concentrations. The results extend to the nonlinear version, partial derivative(t)u+ (-Delta)(sigma/2)A(u) = f, but only when the nondecreasing function A : R+ -> R+ is concave. In the elliptic case, complete symmetrization results are proved for B(v)+(-Delta)(sigma/2)v = f when B(v) is a convex nonnegative function for v > 0 with B(0) = 0, and partial results hold when B is concave. Remarkable counterexamples are constructed for the parabolic equation when A is convex, resp. for the elliptic equation when B is concave. Such counterexamples do not exist in the standard diffusion case sigma = 2. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 582
页数:30
相关论文
共 59 条
[1]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[2]  
Alvino A, 1996, COMMUN PUR APPL MATH, V49, P217, DOI 10.1002/(SICI)1097-0312(199603)49:3<217::AID-CPA1>3.0.CO
[3]  
2-G
[4]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[5]  
Alvino A., 2008, J. Appl. Funct. Anal., V3, P61
[6]   Comparison results for solutions of nonlinear parabolic equations [J].
Alvino, Angelo ;
Volpicelli, Roberta ;
Volzone, Bruno .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (5-6) :431-443
[7]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[8]  
[Anonymous], 1975, ANN SCUOLA NORM-SCI
[9]  
[Anonymous], 1980, MONOGR STUD MATH
[10]  
[Anonymous], 2009, CAMBRIDGE STUD ADV M