Task-Based LSTM Kinematic Modeling for a Tendon-Driven Flexible Surgical Robot

被引:16
作者
Bai, Weibang [1 ,2 ]
Cursi, Francesco [1 ]
Guo, Xiaotong [1 ]
Huang, Baoru [1 ]
Lo, Benny [1 ]
Yang, Guang-Zhong [1 ,3 ]
Yeatman, Eric M. [4 ]
机构
[1] Imperial Coll London, Hamlyn Ctr, London SW7 2AZ, England
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200240, Peoples R China
[4] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS | 2022年 / 4卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
LSTM (long short-term memory) network; tendon-driven; surgical robot; learning modeling;
D O I
10.1109/TMRB.2021.3127366
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tendon-driven flexible surgical robots are normally suffering from the inaccurate modeling and imprecise motion control problems due to the nonlinearities of tendon transmission. Learning-based approaches are experimental data-driven with uncertainties modeled empirically, which can be adopted to improve the inevitable issues. This work proposes a LSTM-based kinematic modeling approach with task-based data for a flexible tendon-driven surgical robot to improve the control accuracy. Real experiments demonstrated the effectiveness and superiority of the proposed learned model when completing path following tasks, especially compared to the traditional modeling.
引用
收藏
页码:339 / 342
页数:4
相关论文
共 10 条
[1]   A novel optimal coordinated control strategy for the updated robot system for single port surgery [J].
Bai, Weibang ;
Cao, Qixin ;
Leng, Chuntao ;
Cao, Yang ;
Fujie, Masakatsu G. ;
Pan, Tiewen .
INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2017, 13 (03)
[2]   Model Predictive Control for a Tendon-Driven Surgical Robot with Safety Constraints in Kinematics and Dynamics [J].
Cursi, Francesco ;
Modugno, Valerio ;
Kormushev, Petar .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :7653-7660
[3]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[4]  
Hong WZ, 2020, IEEE INT CONF ROBOT, P1860, DOI [10.1109/ICRA40945.2020.9196955, 10.1109/icra40945.2020.9196955]
[5]   Research on key technologies of multi-task-oriented live maintenance robots for Ultra High Voltage multi-split transmission lines [J].
Jiang, Wei ;
Zou, Dehua ;
Zhou, Xiao ;
Zuo, Gan ;
Ye, Gao Cheng ;
Li, Hong Jun .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2021, 48 (01) :17-28
[6]   Modularization of 2-and 3-DoF Coupled Tendon-Driven Joints [J].
Li, Wenyang ;
Chen, Peng ;
Bai, Dianchun ;
Zhu, Xiaoxiao ;
Togo, Shunta ;
Yokoi, Hiroshi ;
Jiang, Yinlai .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :905-917
[7]  
Lillicrap T.P., 2019, arXiv
[8]   A Single-Port Robotic System for Transanal Microsurgery-Design and Validation [J].
Shang, Jianzhong ;
Leibrandt, Konrad ;
Giataganas, Petros ;
Vitiello, Valentina ;
Seneci, Carlo A. ;
Wisanuvej, Piyamate ;
Liu, Jindong ;
Gras, Gauthier ;
Clark, James ;
Darzi, Ara ;
Yang, Guang-Zhong .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03) :1510-1517
[9]   Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation [J].
Troccaz, Jocelyne ;
Dagnino, Giulio ;
Yang, Guang-Zhong .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 21, 2019, 21 :193-218
[10]   Hysteresis Modeling of Robotic Catheters Based on Long Short-Term Memory Network for Improved Environment Reconstruction [J].
Wu, Di ;
Zhang, Yao ;
Ourak, Mouloud ;
Niu, Kenan ;
Dankelman, Jenny ;
Poorten, Emmanuel Vander .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :2106-2113