Prediction of Antimicrobial Resistance for disease-causing agents using Machine Learning Using Machine Learning algorithms to predict individuals susceptibility of developing AMR for drugs

被引:0
|
作者
Kulshrestha, Srajan [1 ]
Nayar, Dinesh [1 ]
Panda, Sanjana [1 ]
Dohe, Vaishali [2 ]
Jarali, Ashwini [1 ]
机构
[1] Int Inst Informat Technol, Dept Comp Engn, Pune, Maharashtra, India
[2] BJ Med Coll, Dept Microbiol, Pune, Maharashtra, India
来源
PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS) | 2018年
关键词
Machine Learning; Classification; Decision Tree; Association Rule; Apriori Algorithm; Data Mining; Pathogens; Drugs; Combination Therapy; Antimicrobial Resistance; CLSI Guidelines; Staphylococcus aureus (sau); Pseudomonas aeruginosa elastase (pae);
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Antimicrobial resistance (AMR) occurs when disease-causing microorganisms are resistant towards prescribed drugs, nullifying its effect. As a consequence, there is a delay in recovery which worsens the patient's health. Antimicrobial resistance is identified as a global threat by the medical fraternity and various government bodies. Objective of the proposed system is to integrate technology with the field of bio-medical, in context with AMR. We applied various machine learning algorithms on datasets, to identify patterns and use them to predict resistance towards various drugs. This model would help in closing the gap between Doctors and Labs. In this model, we used ML and data mining techniques to predict AMR for individual patients based on trends identified from datasets. For building the model we use results of Patients undergoing antibiotic susceptibility test as datasets.
引用
收藏
页码:972 / 975
页数:4
相关论文
共 50 条
  • [1] Multiple disease prediction using Machine learning algorithms
    Arumugam K.
    Naved M.
    Shinde P.P.
    Leiva-Chauca O.
    Huaman-Osorio A.
    Gonzales-Yanac T.
    Materials Today: Proceedings, 2023, 80 : 3682 - 3685
  • [2] Employing Machine Learning for the Prediction of Antimicrobial Resistance (AMR) Phenotypes
    Kim, Donghoon
    Jun, Se-ran
    Hwang, Doosung
    SOUTHEASTCON 2024, 2024, : 1519 - 1524
  • [3] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Lazaros Tzelves
    Lazaros Lazarou
    Georgios Feretzakis
    Dimitris Kalles
    Panagiotis Mourmouris
    Evangelos Loupelis
    Spyridon Basourakos
    Marinos Berdempes
    Ioannis Manolitsis
    Iraklis Mitsogiannis
    Andreas Skolarikos
    Ioannis Varkarakis
    World Journal of Urology, 2022, 40 : 1731 - 1736
  • [4] Using machine learning techniques to predict antimicrobial resistance in stone disease patients
    Tzelves, Lazaros
    Lazarou, Lazaros
    Feretzakis, Georgios
    Kalles, Dimitris
    Mourmouris, Panagiotis
    Loupelis, Evangelos
    Basourakos, Spyridon
    Berdempes, Marinos
    Manolitsis, Ioannis
    Mitsogiannis, Iraklis
    Skolarikos, Andreas
    Varkarakis, Ioannis
    WORLD JOURNAL OF UROLOGY, 2022, 40 (07) : 1731 - 1736
  • [5] Using Machine Learning to Predict Antimicrobial Resistance?A Literature Review
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Feretzakis, Georgios
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Fildisis, Georgios
    ANTIBIOTICS-BASEL, 2023, 12 (03):
  • [6] Using Machine Learning Algorithms to Predict Antimicrobial Resistance and Assist Empirical Treatment
    Feretzakis, Georgios
    Loupelis, Evangelos
    Sakagianni, Aikaterini
    Kalles, Dimitris
    Lada, Malvina
    Christopoulos, Constantinos
    Dimitrellos, Evangelos
    Martsoukou, Maria
    Skarmoutsou, Nikoleta
    Petropoulou, Stavroula
    Alexiou, Konstantinos
    Velentza, Aikaterini
    Michelidou, Sophia
    Valakis, Konstantinos
    IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 75 - 78
  • [7] Heart Disease Prediction by Using Machine Learning Algorithms
    Erdogan, Alperen
    Guney, Selda
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [8] Cardiac disease risk prediction using machine learning algorithms
    Stonier, Albert Alexander
    Gorantla, Rakesh Krishna
    Manoj, K.
    HEALTHCARE TECHNOLOGY LETTERS, 2024, 11 (04) : 213 - 217
  • [9] Prediction of fatty liver disease using machine learning algorithms
    Wu, Chieh-Chen
    Yeh, Wen-Chun
    Hsu, Wen-Ding
    Islam, Md. Mohaimenul
    Phung Anh Nguyen
    Poly, Tahmina Nasrin
    Wang, Yao-Chin
    Yang, Hsuan-Chia
    Li, Yu-Chuan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 170 : 23 - 29
  • [10] Heart Disease Prediction Using Machine Learning Algorithms
    Malavika, G.
    Rajathi, N.
    Vanitha, V.
    Parameswari, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 24 - 27