Exact solutions of the hierarchical Korteweg-de Vries equation of microstructured granular materials

被引:18
作者
Abourabia, A. M. [1 ]
El-Danaf, T. S. [1 ]
Morad, A. M. [1 ]
机构
[1] Menoufiya Univ, Fac Sci, Dept Math, Shibin Al Kawm 32511, Egypt
关键词
SOLITARY WAVE SOLUTIONS; TANH-FUNCTION METHOD;
D O I
10.1016/j.chaos.2008.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problems under consideration are related to wave propagation in microstructured materials, characterized by higher-order nonlinear and higher-order dispersive effects; particularly, the wave propagation in dilatant granular materials. In the present paper the model equation is solved analytically by exact methods. The types of solutions are defined and discussed over a wide range of material parameters (two dispersion parameters and one microstructure parameter). The dispersion properties and the relation between group and phase velocities of the model equation are studied. The diagrams are drawn to illustrate the physical properties of the exact solutions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:716 / 726
页数:11
相关论文
共 16 条
[1]  
Abdul-Majid Wazwaz, 2006, Commun Nonlinear Sci Numer Simul, V11, P148
[2]   On solitary wave solutions for the two-dimensional nonlinear modified Kortweg-de Vries-Burger equation [J].
Abourabia, AM ;
El Horbaty, MM .
CHAOS SOLITONS & FRACTALS, 2006, 29 (02) :354-364
[3]   The use of adomian decomposition method for solving the regularized long-wave equation [J].
El-Danaf, TS ;
Ramadan, MA ;
Alaal, FEIA .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :747-757
[4]  
Fung MK, 1997, CHINESE J PHYS, V35, P789
[5]   DYNAMICS AND WAVE-PROPAGATION IN DILATANT GRANULAR-MATERIALS [J].
GIOVINE, P ;
OLIVERI, F .
MECCANICA, 1995, 30 (04) :341-357
[6]   On the propagation of solitary pulses in microstructured materials [J].
Ilison, O ;
Salupere, A .
CHAOS SOLITONS & FRACTALS, 2006, 29 (01) :202-214
[7]  
Johnson R. S., 1997, A Modern Introduction to the Mathematical Theory of Water Waves
[8]   A complex tanh-function method applied to nonlinear equations of Schrodinger type [J].
Khuri, SA .
CHAOS SOLITONS & FRACTALS, 2004, 20 (05) :1037-1040
[9]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[10]  
Lou SY, 2002, Z NATURFORSCH A, V57, P737