Numerical characterization of bump formation in the runaway electron tail

被引:45
作者
Decker, J. [1 ]
Hirvijoki, E. [2 ]
Embreus, O. [2 ]
Peysson, Y. [3 ]
Stahl, A. [2 ]
Pusztai, I. [2 ]
Fulop, T. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden
[3] CEA, IRFM, F-13108 St Paul Les Durance, France
基金
瑞典研究理事会;
关键词
runaway electron; Abraham-Lorentz-Dirac; synchrotron emission; kinetic instabilities; Fokker-Planck; FOKKER-PLANCK; DISRUPTIONS;
D O I
10.1088/0741-3335/58/2/025016
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker-Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.
引用
收藏
页数:15
相关论文
共 31 条
[21]   Disruption mitigation by massive gas injection in JET [J].
Lehnen, M. ;
Alonso, A. ;
Arnoux, G. ;
Baumgarten, N. ;
Bozhenkov, S. A. ;
Brezinsek, S. ;
Brix, M. ;
Eich, T. ;
Gerasimov, S. N. ;
Huber, A. ;
Jachmich, S. ;
Kruezi, U. ;
Morgan, P. D. ;
Plyusnin, V. V. ;
Reux, C. ;
Riccardo, V. ;
Sergienko, G. ;
Stamp, M. F. .
NUCLEAR FUSION, 2011, 51 (12)
[22]   Experimental Observation of Increased Threshold Electric Field for Runaway Generation due to Synchrotron Radiation Losses in the FTU Tokamak [J].
Martin-Solis, J. R. ;
Sanchez, R. ;
Esposito, B. .
PHYSICAL REVIEW LETTERS, 2010, 105 (18)
[23]   Momentum-space structure of relativistic runaway electrons [J].
Martin-Solis, JR ;
Alvarez, JD ;
Sanchez, R ;
Esposito, B .
PHYSICS OF PLASMAS, 1998, 5 (06) :2370-2377
[24]  
Pauli W, 1958, DOVER BOOKS PHYS
[25]   Growth and decay of runaway electrons above the critical electric field under quiescent conditions [J].
Paz-Soldan, C. ;
Eidietis, N. W. ;
Granetz, R. ;
Hollmann, E. M. ;
Moyer, R. A. ;
Wesley, J. C. ;
Zhang, J. ;
Austin, M. E. ;
Crocker, N. A. ;
Wingen, A. ;
Zhu, Y. .
PHYSICS OF PLASMAS, 2014, 21 (02)
[26]   NUMERICAL SIMULATIONS OF THE RADIO-FREQUENCY-DRIVEN TOROIDAL CURRENT IN TOKAMAKS [J].
Peysson, Y. ;
Decker, J. .
FUSION SCIENCE AND TECHNOLOGY, 2014, 65 (01) :22-42
[27]   Quasi-linear analysis of whistler waves driven by relativistic runaway beams in tokamaks [J].
Pokol, G. ;
Fulop, T. ;
Lisak, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (04)
[28]   Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons [J].
Pokol, G. I. ;
Komar, A. ;
Budai, A. ;
Stahl, A. ;
Fulop, T. .
PHYSICS OF PLASMAS, 2014, 21 (10)
[29]   Modelling of lower hybrid current drive in the presence of spatial radial diffusion [J].
Shkarofsky, IP ;
Shoucri, MM .
NUCLEAR FUSION, 1997, 37 (04) :539-547
[30]   Effective Critical Electric Field for Runaway-Electron Generation [J].
Stahl, A. ;
Hirvijoki, E. ;
Decker, J. ;
Embreus, O. ;
Fulop, T. .
PHYSICAL REVIEW LETTERS, 2015, 114 (11)