A Nonconforming Finite Element Method for an Acoustic Fluid-Structure Interaction Problem

被引:6
作者
Brenner, Susanne C. [1 ,2 ]
Cesmelioglu, Aycil [3 ]
Cui, Jintao [4 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[4] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconforming Finite Element Method; Fluid-Structure Interaction; Acoustic Fluid; VIBRATION PROBLEM; PENALTY METHOD; SOLID SYSTEMS; APPROXIMATION; COMPUTATION; FORMULATION; EQUATIONS; MODES;
D O I
10.1515/cmam-2017-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonconforming finite element approximation of the vibration modes of an acoustic fluid-structure interaction. Displacement variables are used for both the fluid and the solid. The numerical scheme is based on an irrotational fluid displacement formulation and hence it is free of spurious eigen-modes. The method uses weakly continuous P-1 vector fields for the fluid and classical piecewise linear elements for the solid, and it has O(h(2)) convergence for the eigenvalues on properly graded meshes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:383 / 406
页数:24
相关论文
共 30 条
[1]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2001, Spectral problems associated with corner singularities of solutions to elliptic equations
[3]  
[Anonymous], 1985, MONOGR STUD MATH
[4]  
[Anonymous], 2003, Numer. Math. Sci. Comput
[5]  
[Anonymous], 1978, STUDIES MATH ITS APP
[6]  
Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
[7]   Approximation of a structural acoustic vibration problem by hexahedral finite elements [J].
Bermúdez, A ;
Gamallo, P ;
Nogueiras, MR ;
Rodríguez, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :391-421
[8]   FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES [J].
BERMUDEZ, A ;
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R ;
SOLOMIN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1280-1295
[9]   Finite element analysis of compressible and incompressible fluid-solid systems [J].
Bermudez, A ;
Duran, R ;
Rodriguez, R .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :111-136
[10]   FINITE-ELEMENT COMPUTATION OF THE VIBRATION MODES OF A FLUID-SOLID SYSTEM [J].
BERMUDEZ, A ;
RODRIGUEZ, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 119 (3-4) :355-370