Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation

被引:25
作者
Voordeckers, Karin [1 ,2 ]
Verstrepen, Kevin J. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, CMPG Lab Genet & Genom, B-3001 Leuven, Belgium
[2] VIB Lab Syst Biol, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
GENOME DUPLICATION; GENE DUPLICATION; POPULATION GENOMICS; YEAST; DRIVES; INTERFERENCE; PRESERVATION; EVOLVABILITY; ROBUSTNESS; POLYPLOIDY;
D O I
10.1016/j.mib.2015.06.018
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Understanding how changes in DNA drive the emergence of new phenotypes and fuel evolution remains a major challenge. One major hurdle is the lack of a fossil record of DNA that allows linking mutations to phenotypic changes. However, the emergence of high-throughput sequencing technologies now allows sequencing genonnes of natural and experimentally evolved microbial populations to study how mutations arise and spread through a population, how new phenotypes arise and how this ultimately leads to adaptation. Here, we highlight key studies that have increased our mechanistic understanding of evolution. We specifically focus on the model eukaryote Saccharomyces cerevisiae because its relatively short replication time, much-studied biology and available molecular toolbox have made it a prime model for molecular evolution studies.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 72 条
[1]   Experimental microbial evolution: history and conceptual underpinnings [J].
Adams, Julian ;
Rosenzweig, Frank .
GENOMICS, 2014, 104 (06) :393-398
[2]   Defects arising from whole-genome duplications in Saacharomyces cerevisiae [J].
Andalis, AA ;
Storchova, Z ;
Styles, C ;
Galitski, T ;
Pellman, D ;
Fink, GR .
GENETICS, 2004, 167 (03) :1109-1121
[3]   Following Gene Duplication, Paralog Interference Constrains Transcriptional Circuit Evolution [J].
Baker, Christopher R. ;
Hanson-Smith, Victor ;
Johnson, Alexander D. .
SCIENCE, 2013, 342 (6154) :104-108
[4]   Genome dynamics during experimental evolution [J].
Barrick, Jeffrey E. ;
Lenski, Richard E. .
NATURE REVIEWS GENETICS, 2013, 14 (12) :827-839
[5]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[6]   A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes [J].
Bergstroem, Anders ;
Simpson, Jared T. ;
Salinas, Francisco ;
Barre, Benjamin ;
Parts, Leopold ;
Zia, Amin ;
Nguyen Ba, Alex N. ;
Moses, Alan M. ;
Louis, Edward J. ;
Mustonen, Ville ;
Warringer, Jonas ;
Durbin, Richard ;
Liti, Gianni .
MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (04) :872-888
[7]   Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae:: mechanism of galactose-mediated signal transduction [J].
Bhat, PJ ;
Murthy, TVS .
MOLECULAR MICROBIOLOGY, 2001, 40 (05) :1059-1066
[8]   Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1667-1678
[9]   Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts [J].
Brown, Chris A. ;
Murray, Andrew W. ;
Verstrepen, Kevin J. .
CURRENT BIOLOGY, 2010, 20 (10) :895-903
[10]  
BRYSON V, 1952, SCIENCE, V116, P45, DOI 10.1126/science.116.3003.45