The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette

被引:5
|
作者
Yang, Hui [1 ]
Eremeeva, Elena [1 ]
Abramov, Mikhail [1 ]
Herdewijn, Piet [1 ]
机构
[1] Katholieke Univ Leuven, Rega Inst Med Res, Med Chem, Herestr 49,Box 1041, B-3000 Leuven, Belgium
关键词
artificial genes; non-canonical nucleotides; nucleic acids; synthetic biology; transcription; T7; RNA-POLYMERASE; MESSENGER-RNA; IN-VITRO; PCR-AMPLIFICATION; NUCLEIC-ACIDS; DNA; INITIATION; NUCLEOTIDE; EXPRESSION; MECHANISM;
D O I
10.1002/anie.202011887
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic nucleic acids, with four non-canonical nucleobases, can function as genetic materials. A comprehensive analysis of PCR amplification, transcription, reverse transcription, and cloning was done to screen for alternative genetic monomers. A small library of six modified nucleobases was selected: the modified 2 '-deoxyribonucleoside (dZTPs) and ribonucleoside (rZTPs) triphosphates of 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine or inosine together with 5-fluorocytosine or 5-bromocytosine. The fragments composed of one to four modified nucleotides (denoted as DZA) have been successfully recognized and transcribed to natural or modified RNA (denoted as RZA) by T7 RNA polymerase. The fully modified RZA fragment could be reverse transcribed and then amplified in the presence of various dZTPs. Noticeably, modified fragments could function as genetic templates in vivo by encoding the 678 base pair gene of a fluorescent protein in bacteria. These results demonstrate the existence of a fully simulated genetic circuit that uses synthetic materials.
引用
收藏
页码:4175 / 4182
页数:8
相关论文
共 50 条
  • [41] Transcription and replication Far relatives make uneasy bedfellows
    Hendriks, Giel
    Jansen, Jacob G.
    Mullenders, Leon H. F.
    de Wind, Niels
    CELL CYCLE, 2010, 9 (12) : 2300 - 2304
  • [42] Transcription-Replication Conflicts as a Source of Genome Instability
    Goehring, Liana
    Huang, Tony T.
    Smith, Duncan J.
    ANNUAL REVIEW OF GENETICS, 2023, 57 : 157 - 179
  • [43] Synthetic in vitro transcription circuits
    Weitz, Maximilian
    Simmel, Friedrich C.
    TRANSCRIPTION-AUSTIN, 2012, 3 (02): : 87 - 91
  • [44] Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique
    Nestorova, Gergana G.
    Hasenstein, Karl
    Nam Nguyen
    DeCoster, Mark A.
    Crews, Niel D.
    LAB ON A CHIP, 2017, 17 (06) : 1128 - 1136
  • [45] Micropreparation of cultured cells for in situ reverse transcription PCR
    Zhang, HY
    Wadler, S
    BIOTECHNIQUES, 1997, 22 (04) : 618 - &
  • [46] Challenges in quantifying microbial gene expression in soil using quantitative reverse transcription real-time PCR
    Saleh-Lakha, Saleema
    Shannon, Kelly E.
    Goyer, Claudia
    Trevors, Jack T.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2011, 85 (03) : 239 - 243
  • [47] Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA
    Hubin, Elizabeth A.
    Tabib-Salazar, Aline
    Humphrey, Laurence J.
    Flack, Joshua E.
    Olinares, Paul Dominic B.
    Darst, Seth A.
    Campbell, Elizabeth A.
    Paget, Mark S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) : 7171 - 7176
  • [48] Phosphodiesterase 8a Supports HIV-1 Replication in Macrophages at the Level of Reverse Transcription
    Booiman, Thijs
    Jimenez, Viviana Cobos
    van Dort, Karel A.
    van't Wout, Angelique B.
    Kootstra, Neeltje A.
    PLOS ONE, 2014, 9 (10):
  • [49] Reverse Genetics Analysis of Poxvirus Intermediate Transcription Factors
    Warren, Robin D.
    Cotter, Catherine A.
    Moss, Bernard
    JOURNAL OF VIROLOGY, 2012, 86 (17) : 9514 - 9519
  • [50] The interface of transcription and DNA replication in the mitochondria
    Kasiviswanathan, Rajesh
    Collins, Tammy R. L.
    Copeland, William C.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (9-10): : 970 - 978