Twist operators in higher dimensions

被引:93
作者
Hung, Ling-Yan [1 ,5 ]
Myers, Robert C. [2 ]
Smolkin, Michael [3 ,4 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada
[3] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
AdS-CFT Correspondence; Field Theories in Higher Dimensions; Statistical Methods; HEAT KERNEL; ENTANGLEMENT ENTROPY; TENSOR;
D O I
10.1007/JHEP10(2014)178
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study twist operators in higher dimensional CFT's. In particular, we express their conformal dimension in terms of the energy density for the CFT in a particular thermal ensemble. We construct an expansion of the conformal dimension in power series around n = 1, with n being replica parameter. We show that the coefficients in this expansion are determined by higher point correlations of the energy-momentum tensor. In particular, the first and second terms, i.e. the first and second derivatives of the scaling dimension, have a simple universal form. We test these results using holography and free field theory computations, finding agreement in both cases. We also consider the 'operator product expansion' of spherical twist operators and finally, we examine the behaviour of correlators of twist operators with other operators in the limit n -> 1.
引用
收藏
页数:45
相关论文
共 76 条
[1]  
[Anonymous], J STAT MECH
[2]  
[Anonymous], J STAT MECH
[3]   Bulk curves from boundary data in holography [J].
Balasubramanian, Vijay ;
Chowdhury, Borun D. ;
Czech, Bartlomiej ;
de Boer, Jan ;
Heller, Michal P. .
PHYSICAL REVIEW D, 2014, 89 (08)
[4]   Holographic charged Renyi entropies [J].
Belin, Alexandre ;
Hung, Ling-Yan ;
Maloney, Alexander ;
Matsuura, Shunji ;
Myers, Robert C. ;
Sierens, Todd .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12)
[5]   Operator product expansion for Wilson loops and surfaces in the large N limit -: art. no. 105023 [J].
Berenstein, D ;
Corrado, R ;
Fischler, W ;
Maldacena, J .
PHYSICAL REVIEW D, 1999, 59 (10) :1-10
[6]   On the architecture of spacetime geometry [J].
Bianchi, Eugenio ;
Myers, Robert C. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
[7]   Holographic GB gravity in arbitrary dimensions [J].
Buchel, Alex ;
Escobedo, Jorge ;
Myers, Robert C. ;
Paulos, Miguel F. ;
Sinha, Aninda ;
Smolkin, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03)
[8]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[9]   Entanglement entropy and quantum field theory: A non-technical introduction [J].
Calabrese, Pasquale ;
Cardy, John .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) :429-438
[10]   Entanglement spectrum in one-dimensional systems [J].
Calabrese, Pasquale ;
Lefevre, Alexandre .
PHYSICAL REVIEW A, 2008, 78 (03)