A lambda-lemma for partially hyperbolic tori and the obstruction property

被引:23
作者
Cresson, J
机构
[1] Institut de Mathematiques de Jussieu, Univ. Pierre Marie Curie, Paris V., 75252 Paris Cedex 05, Case 247
关键词
Hamiltonian systems; lambda-lemma; hyperbolic tori; topological instability;
D O I
10.1023/A:1007433819941
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a scheme given by Marco, we prove that partially hyperbolic tori along resonant surfaces of near-integrable Hamiltonian systems possess the obstruction property in Arnold's terminology. The proof is based on a specific lambda lemma for these tori.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 10 条
[1]  
Arnold V. I., 1967, PROBLEMES ERGODIQUES
[2]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[3]  
ARNOLD VI, 1992, APPL MATH SCI SERIES, V100
[4]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[5]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69
[6]  
LOCHAK P, 1996, P NATO ADV STUD I 3
[7]  
Marco JP, 1996, ANN I H POINCARE-PHY, V64, P205
[8]  
Palis J., 1982, GEOMETRIC THEORY DYN
[9]   THE MECHANISM OF DESTRUCTION OF RESONANCE TORI OF HAMILTONIAN-SYSTEMS [J].
TRESHCHEV, DV .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 68 (01) :181-203
[10]  
Wiggins S., 1988, APPL MATH SCI, V73