Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit

被引:150
作者
Leung-Pineda, Van
Ryan, Christine E.
Piwnica-Worms, Helen
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Howard Hughes Med Inst, St Louis, MO 63110 USA
关键词
D O I
10.1128/MCB.00447-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In higher eukaryotic organisms, the checkpoint kinase 1 (Chk1) contributes essential functions to both cell cycle and checkpoint control. Chk1 executes these functions, in part, by targeting the Cdc25A protein phosphatase for ubiquitin-mediated proteolysis. In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by the ataxia-telangiectasia-related (ATR) protein kinase. Phosphorylation of Chk1 on these C-terminal serine residues is used as an indicator of Chk1 activation in vivo. Here, we report that inhibition of Chk1 kinase activity paradoxically leads to the accumulation of S317- and S345-phosphorylated Chk1 in vivo and that ATR catalyzes Chk1 phosphorylation under these conditions. We demonstrate that Chk1 phosphorylation by ATR is antagonized by protein phosphatase 2A (PP2A). Importantly, dephosphorylation of Chk1 by PP2A is regulated, in part, by the kinase activity of Chk1. We propose that the ATR-Chk1-PP2A regulatory circuit functions to keep Chk1 in a low-activity state during an unperturbed cell division cycle but at the same time keeps Chk1 primed to respond rapidly in the event that cells encounter genotoxic stress.
引用
收藏
页码:7529 / 7538
页数:10
相关论文
共 53 条
[1]   Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex [J].
Adams, KE ;
Medhurst, AL ;
Dart, DA ;
Lakin, ND .
ONCOGENE, 2006, 25 (28) :3894-3904
[2]   Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation [J].
Ali, A ;
Zhang, J ;
Bao, SD ;
Liu, I ;
Otterness, D ;
Dean, NM ;
Abraham, RT ;
Wang, XF .
GENES & DEVELOPMENT, 2004, 18 (03) :249-254
[3]   IDENTIFICATION AND CHARACTERIZATION OF NEW ELEMENTS INVOLVED IN CHECKPOINT AND FEEDBACK CONTROLS IN FISSION YEAST [J].
ALKHODAIRY, F ;
FOTOU, E ;
SHELDRICK, KS ;
GRIFFITHS, DJF ;
LEHMANN, AR ;
CARR, AM .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (02) :147-160
[4]   Genetic analysis of the kinome and phosphatome in cancer [J].
Arena, S ;
Benvenuti, S ;
Bardelli, A .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (18) :2092-2099
[5]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[6]   Nuclear localization of protein phosphatase 5 is dependent on the carboxy-terminal region [J].
Borthwick, EB ;
Zeke, T ;
Prescott, AR ;
Cohen, PTW .
FEBS LETTERS, 2001, 491 (03) :279-284
[7]  
Busby EC, 2000, CANCER RES, V60, P2108
[8]   Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding [J].
Chen, MS ;
Ryan, CE ;
Piwnica-Worms, H .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (21) :7488-7497
[9]   γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair [J].
Chowdhury, D ;
Keogh, MC ;
Ishii, H ;
Peterson, CL ;
Buratowski, S ;
Lieberman, J .
MOLECULAR CELL, 2005, 20 (05) :801-809
[10]   SIGNAL INTEGRATION AT THE LEVEL OF PROTEIN-KINASES, PROTEIN PHOSPHATASES AND THEIR SUBSTRATES [J].
COHEN, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (10) :408-413