UO2-Eu2O3 compound fuel fabrication via spark plasma sintering

被引:10
作者
Papynov, E. K. [1 ,2 ]
Shichalin, O. O. [1 ,2 ]
Buravlev, I. Yu [1 ,2 ]
Portnyagin, A. S. [1 ,2 ]
Mayorov, V. Yu [1 ]
Belov, A. A. [1 ,2 ]
Sukhorada, A. E. [2 ]
Gridasova, E. A. [2 ]
Tananaev, I. G. [2 ]
Sergienko, V., I [1 ]
机构
[1] Russian Acad Sci, Inst Chem, Far Eastern Branch, 159,Prosp 100 Letiya Vladivostoka, Vladivostok 690022, Russia
[2] Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok 690091, Russia
基金
俄罗斯科学基金会;
关键词
Nuclear fuel; Ceramics; Uranium dioxide; Integral fuel burnable absorbers; Europium oxide; Spark plasma sintering;
D O I
10.1016/j.jallcom.2020.155904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
UO2-based nuclear fuel containing integral fuel burnable absorbers (IFBA) is an economically and technically efficient solution for optimization of nuclear power reactors operation. The paper studies a new way to obtain compound UO2-Eu2O3 pellet fuel using an unconventional spark plasma sintering technology (SPS). Earlier unknown data on densification dynamics of (U,Eu)O-2 solid solution and its formation under SPS conditions is presented for IFBA content of 2 and 8 wt% introduced via ultra-sonication in the liquid phase. Structural changes in the fuel compositions depending on sintering temperature and IFBA content have been identified by the means of metallography and electron microscopy. A complex of measurements have been done to correlate materials microhardness (HV), compressive strength (sigma(cs)), and density (rho) with synthesis conditions. Pore and defect formation in the Eu2O3-rich regions of the UO2 ceramics is proved to be governed by Kirkendall effect, which was observed for conventional sintering approaches. Presented results are new and complement fundamental understanding the scope of opportunities unconventional SPS technique provides for nuclear power industry. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 47 条
  • [1] Prospects for poisoning reactor cores of the future
    Asou, M
    Porta, J
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1997, 168 (1-3) : 261 - 270
  • [2] Lattice contraction and lattice deformation of UO2 and ThO2 doped with Gd2O3
    Baena, Angela
    Cardinaels, Thomas
    Govers, Kevin
    Pakarinen, Janne
    Binnemans, Koen
    Verwerft, Marc
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2015, 467 : 135 - 143
  • [3] Synthesis of UO2 and ThO2 doped with Gd2O3
    Baena, Angela
    Cardinaels, Thomas
    Vos, Benedict
    Binnemans, Koen
    Verwerft, Marc
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2015, 461 : 271 - 281
  • [4] Use of mixed uranium-plutonium fuel with different burnable absorbers in RBMK reactors
    Balygin, AA
    Burlakov, EV
    Krayushkin, AV
    Novikov, VG
    Tishkin, YA
    Fedosov, AM
    [J]. ATOMIC ENERGY, 1999, 86 (03) : 161 - 164
  • [5] Master sintering curves for UO2 and UO2-SiC composite processed by spark plasma sintering
    Chen, Zhichao
    Subhash, Ghatu
    Tulenko, James S.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2014, 454 (1-3) : 427 - 433
  • [6] Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS)
    Cologna, M.
    Tyrpekl, V.
    Ernstberger, M.
    Stohr, S.
    Somers, J.
    [J]. CERAMICS INTERNATIONAL, 2016, 42 (06) : 6619 - 6623
  • [7] Fabrication of Porous Materials by Spark Plasma Sintering: A Review
    Dudina, Dina V.
    Bokhonov, Boris B.
    Olevsky, Eugene A.
    [J]. MATERIALS, 2019, 12 (03)
  • [8] Sintering behavior of UO2-Gd2O3 fuel: Pore formation mechanism
    Durazzo, M.
    Saliba-Silva, A. M.
    de Carvalho, E. F. Urano
    Riella, H. G.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 433 (1-3) : 334 - 340
  • [9] Remarks on the sintering behavior of UO2-Gd2O3 fuel
    Durazzo, M.
    Saliba-Silva, A. M.
    de Carvalho, E. F. Urano
    Riella, H. G.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2010, 405 (02) : 203 - 205
  • [10] Phase studies in the UO2-Gd2O3 system
    Durazzo, M.
    Oliveira, F. B. V.
    Urano de Carvalho, E. F.
    Riella, H. G.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2010, 400 (03) : 183 - 188