Quasi-Hopf algebra actions and smash products

被引:45
作者
Bulacu, D
Panaite, F
Van Oystaeyen, F
机构
[1] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
[2] Romanian Acad, Inst Math, RO-70700 Bucharest, Romania
[3] Univ Instelling Antwerp, Dept Math & Comp Sci, B-2610 Wilrijk, Belgium
关键词
D O I
10.1080/00927870008826849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:631 / 651
页数:21
相关论文
共 17 条
[1]   QUASI-QUANTUM GROUPS, KNOTS, 3-MANIFOLDS, AND TOPOLOGICAL FIELD-THEORY [J].
ALTSCHULER, D ;
COSTE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :83-107
[2]   A generalization of the quasi-Hopf algebra Dω(G) [J].
Bulacu, D ;
Panaite, F .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) :4125-4141
[3]   HOPF ALGEBRA ACTIONS [J].
COHEN, M ;
FISHMAN, D .
JOURNAL OF ALGEBRA, 1986, 100 (02) :363-379
[4]   FROM SUPERSYMMETRY TO QUANTUM COMMUTATIVITY [J].
COHEN, M ;
WESTREICH, S .
JOURNAL OF ALGEBRA, 1994, 168 (01) :1-27
[5]  
Dijkgraaf R., 1990, NUCL PHYS B S, V18B, P60, DOI DOI 10.1016/0920-5632(91)90123-V
[6]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[7]  
Drinfeld V. G., 1990, PROBLEMS MODERN QUAN
[8]  
HAUSSER F, IN PRESS COMM MATH P
[9]  
HAUSSER F, IN PRESS REV MATH PH
[10]   AFFINE HOPF ALGEBRAS, 1 [J].
HEYNEMAN, RG ;
SWEEDLER, ME .
JOURNAL OF ALGEBRA, 1969, 13 (02) :192-&