Vectorial Hyperbent Trace Functions From the PSap Class-Their Exact Number and Specification

被引:10
作者
Muratovic-Ribic, Amela [1 ]
Pasalic, Enes [2 ]
Ribic, Samir [3 ]
机构
[1] Univ Sarajevo, Dept Math, Sarajevo 71000, Bosnia & Herceg
[2] Univ Primorska, Koper 6000, Slovenia
[3] Univ Sarajevo, Dept Elect Engn, Sarajevo 71000, Bosnia & Herceg
关键词
Cryptography; Boolean functions; bent functions; vectorial hyperbent functions; trace functions; sequences; MONOMIAL BENT FUNCTIONS; DICKSON POLYNOMIALS; EXPONENTS; SUMS;
D O I
10.1109/TIT.2014.2320269
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To identify and specify trace bent functions of the form Tr(P(x)), where P(x) is an element of F(2)n [x], has been an important research topic lately. We characterize a class of vectorial (hyper) bent functions of the form F(x) = Tr-k(n)(Sigma(2k)(i=0)a(i)x(i(2k-1))), where n = 2k, in terms of finding an explicit expression for the coefficients a(i) so that F is vectorial hyperbent. These coefficients only depend on the choice of the interpolating polynomial used in the Lagrange interpolation of the elements of U and some prespecified outputs, where U is the cyclic group of (2(n/2) + 1) th roots of unity in F(2)n. We show that these interpolation polynomials can be chosen in exactly (2(k) + 1)!2(k-1) ways and this is the exact number of vectorial hyperbent functions of the form Tr-k(n)(Sigma(2k)(i=0)a(i)x(i(2k-1))). Furthermore, a simple optimization method is proposed for selecting the interpolation polynomials that give rise to trace polynomials with a few nonzero coefficients.
引用
收藏
页码:4408 / 4413
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 2005, SIGNAL DESIGN GOOD C, DOI DOI 10.1017/CBO9780511546907
[2]   A new class of monomial bent functions [J].
Canteaut, Anne ;
Charpin, Pascale ;
Kyureghyan, Gohar M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) :221-241
[3]   Hyper-bent functions and cyclic codes [J].
Carlet, C ;
Gaborit, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) :466-482
[4]   Hyperbent functions, Kloosterman sums, and Dickson polynomials [J].
Charpin, Pascale ;
Gong, Guang .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4230-4238
[5]   Cubic monomial bent functions:: A subclass of M [J].
Charpin, Pascale ;
Kyureghyan, Gohar M. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :650-665
[6]  
Dillon J.F., 1974, THESIS U MARYLAND CO
[7]   New cyclic difference sets with Singer parameters [J].
Dillon, JF ;
Dobbertin, H .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :342-389
[8]   Construction of bent functions via Niho power functions [J].
Dobbertin, Hans ;
Leander, Gregor ;
Canteaut, Anne ;
Carlet, Claude ;
Felke, Patrick ;
Gaborit, Philippe .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (05) :779-798
[9]   VECTORIAL BOOLEAN FUNCTIONS WITH GOOD CRYPTOGRAPHIC PROPERTIES [J].
Feng, Keqin ;
Yang, Jing .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (06) :1271-1282
[10]   An efficient characterization of a family of hyper-bent functions with multiple trace terms [J].
Flori, Jean-Pierre ;
Mesnager, Sihem .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2013, 7 (01) :43-68