On skew information

被引:67
作者
Luo, SL [1 ]
Zhang, Q
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fisher information; quantum estimation; quantum states; skew information; uncertainty relations;
D O I
10.1109/TIT.2004.831853
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that skew information introduced by Wigner and Yanase, which is a natural informational extension of variance for pure states, can be interpreted as a measure of quantum uncertainty. By virtue of skew information, we establish a new uncertainty relation in the spirit of Schrodinger, which incorporates both incompatibility (encoded in the commutator) and correlations (encoded in a new correlation measure related to skew information) between observables, and moreover is stronger than the conventional ones.
引用
收藏
页码:1778 / 1782
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 1930, P PRUSS ACAD SC PHYS
[2]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[3]  
BRAUNSTEIN SL, QUANTPH9507004
[4]   AN EXTENDED CENCOV CHARACTERIZATION OF THE INFORMATION METRIC [J].
CAMPBELL, LL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (01) :135-141
[5]  
Cencov NN., 2000, Statistical decision rules and optimal inference, DOI [10.1090/mmono/053, DOI 10.1090/MMONO/053]
[6]  
Chuang I.L., 2000, QUANTUM COMPUTATION
[7]   HOMOGENEITY OF STATE SPACE OF FACTORS OF TYPE-III [J].
CONNES, A ;
STORMER, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (02) :187-196
[8]  
Cramer H., 1974, Mathematical Methods of Statistics, VVolume 9
[9]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725
[10]   Wigner-Yanase information on quantum state space: The geometric approach [J].
Gibilisco, P ;
Isola, T .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3752-3762