Frames and topological spaces in MSet

被引:0
作者
Sepahani, Sara [1 ]
Mahmoudi, Mojgan [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Math, Tehran 19839, Iran
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2022年 / 48期
关键词
frame; topological space; topos; M; -set; COMPLETENESS; TOPOS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a definition for frames in the category MSet of actions of a monoid M on sets. We then show that, like in the classical case, frames and (internally) complete Heyting algebras are the same. Further, we give a definition of a topological space in MSet and study the relation between frames and topological spaces in this category. We show that the well known adjunction between the two categories still exists in MSet.
引用
收藏
页码:1119 / 1132
页数:14
相关论文
共 8 条
[1]  
[Anonymous], 1992, Sheaves in Geometry and Logic: A First Introduction to Topos Theory
[2]  
Ebrahimi M.M., 2001, Italian Journal of Pure and Applied Mathematics, V9, P123
[3]   INTERNAL COMPLETENESS AND INJECTIVITY OF BOOLEAN-ALGEBRAS IN THE TOPOS OF M-SETS [J].
EBRAHIMI, MM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (02) :323-332
[4]  
Goldblatt R., 1979, TOPOI CATEGORIAL ANA
[5]  
Johnstone P., 1986, CAMBRIDGE STUDIES AD
[6]  
Mahmoudi M., 1998, THESIS SHAHID BEHESH
[7]  
Picado J, 2012, FRONT MATH, pCOVER1, DOI 10.1007/978-3-0348-0154-6
[8]   TOPOLOGICAL SPACE OBJECTS IN A TOPOS .2. EPSILON-COMPLETENESS AND EPSILON-COCOMPLETENESS [J].
STOUT, LN .
MANUSCRIPTA MATHEMATICA, 1975, 17 (01) :1-14