Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers

被引:52
作者
Wang, Yue [1 ]
Fong, Kah Ee [2 ]
Yang, Shancheng [1 ]
Van Duong Ta [1 ]
Gao, Yuan [1 ]
Wang, Zeng [1 ,3 ]
Nalla, Venkatram [3 ]
Demir, Hilmi Volkan [1 ,2 ,3 ,4 ,5 ,6 ]
Sun, Handong [1 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Luminous Ctr Excellence Semicond Lighting & Displ, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[4] Bilkent Univ, Dept Elect & Elect Engn, TR-06533 Ankara, Turkey
[5] Bilkent Univ, Dept Phys, Ankara, Turkey
[6] Bilkent Univ, UNAM Natl Nanotechnol Res Ctr, Ankara, Turkey
基金
新加坡国家研究基金会;
关键词
CdZnS/ZnS quantum dots; Auger recombination; stimulated emission; multiphoton excitation; toroid laser; SEMICONDUCTOR NANOCRYSTALS; AUGER RECOMBINATION; OPTICAL GAIN; PHOTOLUMINESCENCE; SUPPRESSION; LASERS; EFFICIENT;
D O I
10.1002/lpor.201500063
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady-state and time-resolved spectroscopy studies on a series of CdZnS-based CQDs, we unambiguously clarify that CdZnS-based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity-free high-Q quasitoroid microlasers were produced from self-assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution-processed gain materials, which could trigger broad research interests.
引用
收藏
页码:507 / 516
页数:10
相关论文
共 39 条
[1]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[2]   Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1-xZnxS/ZnS Nanocrystals [J].
Bae, Wan Ki ;
Nam, Min Ki ;
Char, Kookheon ;
Lee, Seonghoon .
CHEMISTRY OF MATERIALS, 2008, 20 (16) :5307-5313
[3]   Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination [J].
Bae, Wan Ki ;
Padilha, Lazaro A. ;
Park, Young-Shin ;
McDaniel, Hunter ;
Robel, Istvan ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
ACS NANO, 2013, 7 (04) :3411-3419
[4]   Blue semiconductor nanocrystal laser [J].
Chan, Y ;
Steckel, JS ;
Snee, PT ;
Caruge, JM ;
Hodgkiss, JM ;
Nocera, DG ;
Bawendi, MG .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[5]   Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks [J].
Chen, Rui ;
Ling, Bo ;
Sun, Xiao Wei ;
Sun, Han Dong .
ADVANCED MATERIALS, 2011, 23 (19) :2199-+
[6]   Giant multishell CdSe nanocrystal quantum dots with suppressed blinking [J].
Chen, Yongfen ;
Vela, Javier ;
Htoon, Han ;
Casson, Joanna L. ;
Werder, Donald J. ;
Bussian, David A. ;
Klimov, Victor I. ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5026-5027
[7]   Colloidal quantum dot random laser [J].
Chen, Yujie ;
Herrnsdorf, Johannes ;
Guilhabert, Benoit ;
Zhang, Yanfeng ;
Watson, Ian M. ;
Gu, Erdan ;
Laurand, Nicolas ;
Dawson, Martin D. .
OPTICS EXPRESS, 2011, 19 (04) :2996-3003
[8]   Auger Recombination Suppression in Nanocrystals with Asymmetric Electron-Hole Confinement [J].
Climente, Juan I. ;
Movilla, Jose L. ;
Planelles, Josep .
SMALL, 2012, 8 (05) :754-759
[9]   Suppression of Auger Processes in Confined Structures [J].
Cragg, George E. ;
Efros, Alexander L. .
NANO LETTERS, 2010, 10 (01) :313-317
[10]  
Dang C, 2012, NAT NANOTECHNOL, V7, P335, DOI [10.1038/NNANO.2012.61, 10.1038/nnano.2012.61]