Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle

被引:64
作者
Chen, Huibo [1 ]
Xiao, Yongsong [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic gradient; Parameter estimation; Hierarchical identification; Auxiliary model; Hammerstein system; MODEL-PREDICTIVE CONTROL; LEAST-SQUARES ALGORITHM; ITERATIVE ALGORITHM; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1016/j.amc.2014.09.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the hierarchical identification principle to decompose a Hammerstein controlled autoregressive system into three subsystems, apply the key term separation principle to express the system output as a linear combination of the system parameters, and then derive a hierarchical gradient parameter estimation algorithm for identifying all subsystems. Finally, a multi-innovation stochastic gradient algorithm is presented to improve the estimation accuracy by making full of the identification innovation. The simulation results show that the proposed algorithm is effective. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1202 / 1210
页数:9
相关论文
共 47 条
[1]   Convergence of the iterative algorithm for a general Hammerstein system identification [J].
Bai, Er-Wei ;
Li, Kang .
AUTOMATICA, 2010, 46 (11) :1891-1896
[2]   IDENTIFICATION OF NON-LINEAR SYSTEMS - A SURVEY [J].
BILLINGS, SA .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1980, 127 (06) :272-285
[3]   System identification based on Hammerstein model [J].
Chaoui, FZ ;
Giri, F ;
Rochdi, Y ;
Haloua, M ;
Naitali, A .
INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (06) :430-442
[4]   An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation [J].
Dehghan, Mehdi ;
Hajarian, Masoud .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :571-588
[5]   Identification of Hammerstein nonlinear ARMAX systems [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2005, 41 (09) :1479-1489
[6]  
Ding F., 2013, SYSTEM IDENTIFICATIO
[7]   Performance analysis of multi-innovation gradient type identification methods [J].
Ding, Feng ;
Chen, Tongwen .
AUTOMATICA, 2007, 43 (01) :1-14
[8]   Hierarchical estimation algorithms for multivariable systems using measurement information [J].
Ding, Feng .
INFORMATION SCIENCES, 2014, 277 :396-405
[9]   State filtering and parameter estimation for state space systems with scarce measurements [J].
Ding, Feng .
SIGNAL PROCESSING, 2014, 104 :369-380
[10]   Identification methods for Hammerstein nonlinear systems [J].
Ding, Feng ;
Liu, Xiaoping Peter ;
Liu, Guangjun .
DIGITAL SIGNAL PROCESSING, 2011, 21 (02) :215-238