Blow-up of solutions of some nonlinear hyperbolic systems

被引:25
作者
Deng, K [1 ]
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
D O I
10.1216/rmjm/1181071610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two hyperbolic systems: u(tt) = Delta u + \v\(p), v(tt) = Delta(v) + \u\(q) and u(tt) = Delta u + \v(t)\(p), v(tt) = Delta v + \u(t)\(q) in R-n x (0, infinity) with u(x, 0) = f(x), v(x, 0) = h(x), u(t)(x, 0) = g(x), (v)t(x, 0) = k(x). We show that there exists a bound B(n,p) such that if 1 < pq < B(n,p) all nontrivial solutions with compact support blow up in finite time.
引用
收藏
页码:807 / 820
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1983, APPROXIMATION NONLIN
[2]  
CARPIO A, 1994, J MATH PURE APPL, V73, P471
[4]   FINITE-TIME BLOW-UP FOR SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) :323-340
[5]   EXISTENCE IN THE LARGE FOR CLASS U = F (U) IN 2 SPACE DIMENSIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :233-261
[8]  
KUBO H, 1994, HOKKAIDO U PREPRINT, V274
[9]   BLOW-UP FOR SOLUTIONS OF CLASS-U=/U/P WITH SMALL INITIAL DATA [J].
LINDBLAD, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (06) :757-821
[10]   UPPER BOUNDS FOR THE LIFE-SPAN OF SOLUTIONS TO SYSTEMS OF NONLINEAR-WAVE EQUATIONS IN 2-SPACE AND 3-SPACE DIMENSIONS [J].
RAMMAHA, MA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (06) :639-654