Thermal scanning probe lithography

被引:34
作者
Albisetti, Edoardo [1 ]
Calo, Annalisa [2 ,3 ]
Zanut, Alessandra [4 ]
Zheng, Xiaorui [5 ]
de Peppo, Giuseppe Maria [4 ]
Riedo, Elisa [4 ]
机构
[1] Polytech Univ Milan, Dept Phys, Milan, Italy
[2] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[3] Inst Bioengn Catalonia IBEC, Nanoscale Bioelect Characterizat Grp, Barcelona, Spain
[4] NYU, Tandon Sch Engn, New York, NY 10003 USA
[5] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
FORCE MICROSCOPE CANTILEVERS; THERMOCHEMICAL NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FEATURE SIZE; SILICON; POLYMER; TIP; DESIGN; SPEED; MOS2;
D O I
10.1038/s43586-022-00110-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices.
引用
收藏
页数:21
相关论文
共 91 条
[71]  
Rawlings C, 2017, 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), P418
[72]   Accurate Location and Manipulation of Nanoscaled Objects Buried under Spin-Coated Films [J].
Rawlings, Colin ;
Wolf, Heiko ;
Hedrick, James L. ;
Coady, Daniel J. ;
Duerig, Urs ;
Knoll, Armin W. .
ACS NANO, 2015, 9 (06) :6188-6195
[73]   Nanometer Accurate Markerless Pattern Overlay Using Thermal Scanning Probe Lithography [J].
Rawlings, Colin ;
Duerig, Urs ;
Hedrick, James ;
Coady, Dan ;
Knoll, Armin W. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (06) :1204-1212
[74]   Patterned magnetic recording media [J].
Ross, C .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2001, 31 :203-235
[75]   Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays [J].
Salaita, Khalid ;
Wang, Yuhuang ;
Fragala, Joseph ;
Vega, Rafael A. ;
Liu, Chang ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (43) :7220-7223
[76]  
Schafer R., 2021, Magneto-Optical Microscopy, P171
[77]   Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities [J].
Sharma, Parikshit Pratim ;
Albisetti, Edoardo ;
Monticelli, Marco ;
Bertacco, Riccardo ;
Petti, Daniela .
SENSORS, 2016, 16 (07)
[78]   Nanofluidic rocking Brownian motors [J].
Skaug, Michael J. ;
Schwemmer, Christian ;
Fringes, Stefan ;
Rawlings, Colin D. ;
Knoll, Armin W. .
SCIENCE, 2018, 359 (6383) :1505-1508
[79]   Comprehensive modeling of Joule heated cantilever probes [J].
Spieser, M. ;
Rawlings, C. ;
Lortscher, E. ;
Duerig, U. ;
Knoll, A. W. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
[80]   High-speed, sub-15 nm feature size thermochemical nanolithography [J].
Szoszkiewicz, Robert ;
Okada, Takashi ;
Jones, Simon C. ;
Li, Tai-De ;
King, William P. ;
Marder, Seth R. ;
Riedo, Elisa .
NANO LETTERS, 2007, 7 (04) :1064-1069