Thermal scanning probe lithography

被引:34
作者
Albisetti, Edoardo [1 ]
Calo, Annalisa [2 ,3 ]
Zanut, Alessandra [4 ]
Zheng, Xiaorui [5 ]
de Peppo, Giuseppe Maria [4 ]
Riedo, Elisa [4 ]
机构
[1] Polytech Univ Milan, Dept Phys, Milan, Italy
[2] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[3] Inst Bioengn Catalonia IBEC, Nanoscale Bioelect Characterizat Grp, Barcelona, Spain
[4] NYU, Tandon Sch Engn, New York, NY 10003 USA
[5] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
FORCE MICROSCOPE CANTILEVERS; THERMOCHEMICAL NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FEATURE SIZE; SILICON; POLYMER; TIP; DESIGN; SPEED; MOS2;
D O I
10.1038/s43586-022-00110-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices.
引用
收藏
页数:21
相关论文
共 91 条
[11]   Toward 4D Nanoprinting with Tip-Induced Organic Surface Reactions [J].
Carbonell, Carlos ;
Braunschweig, Adam B. .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (02) :190-198
[12]   Speed Dependence of Thermochemical Nanolithography for Gray-Scale Patterning [J].
Carroll, Keith M. ;
Desai, Maitri ;
Giordano, Anthony J. ;
Scrimgeour, Jan ;
King, William P. ;
Riedo, Elisa ;
Curtis, Jennifer E. .
CHEMPHYSCHEM, 2014, 15 (12) :2530-2535
[13]   Parallelization of thermochemical nanolithography [J].
Carroll, Keith M. ;
Lu, Xi ;
Kim, Suenne ;
Gao, Yang ;
Kim, Hoe-Joon ;
Somnath, Suhas ;
Polloni, Laura ;
Sordan, Roman ;
King, William P. ;
Curtis, Jennifer E. ;
Riedo, Elisa .
NANOSCALE, 2014, 6 (03) :1299-1304
[14]   Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography [J].
Carroll, Keith M. ;
Giordano, Anthony J. ;
Wang, Debin ;
Kodali, Vamsi K. ;
Scrimgeour, Jan ;
King, William P. ;
Marder, Seth R. ;
Riedo, Elisa ;
Curtis, Jennifer E. .
LANGMUIR, 2013, 29 (27) :8675-8682
[15]   Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching [J].
Cheng, Bojun ;
Emboras, Alexandros ;
Salamin, Yannick ;
Ducry, Fabian ;
Ma, Ping ;
Fedoryshyn, Yuriy ;
Andermatt, Samuel ;
Luisier, Mathieu ;
Leuthold, Juerg .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[16]   Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography [J].
Cho, Yu Kyoung Ryu ;
Rawlings, Colin D. ;
Wolf, Heiko ;
Spieser, Martin ;
Bisig, Samuel ;
Reidt, Steffen ;
Sousa, Marilyne ;
Khanal, Subarna R. ;
Jacobs, Tevis D. B. ;
Knoll, Armin W. .
ACS NANO, 2017, 11 (12) :11890-11897
[17]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[18]   Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography [J].
Coulembier, Olivier ;
Knoll, Armin ;
Pires, David ;
Gotsmann, Bernd ;
Duerig, Urs ;
Frommer, Jane ;
Miller, Robert D. ;
Dubois, Philippe ;
Hedrick, James L. .
MACROMOLECULES, 2010, 43 (01) :572-574
[19]   Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID) [J].
De Teresa, J. M. ;
Fernandez-Pacheco, A. ;
Cordoba, R. ;
Serrano-Ramon, L. ;
Sangiao, S. ;
Ibarra, M. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (24)
[20]   Synthetic antiferromagnetic spintronics [J].
Duine, R. A. ;
Lee, Kyung-Jin ;
Parkin, Stuart S. P. ;
Stiles, M. D. .
NATURE PHYSICS, 2018, 14 (03) :217-219