Thermal scanning probe lithography

被引:24
作者
Albisetti, Edoardo [1 ]
Calo, Annalisa [2 ,3 ]
Zanut, Alessandra [4 ]
Zheng, Xiaorui [5 ]
de Peppo, Giuseppe Maria [4 ]
Riedo, Elisa [4 ]
机构
[1] Polytech Univ Milan, Dept Phys, Milan, Italy
[2] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[3] Inst Bioengn Catalonia IBEC, Nanoscale Bioelect Characterizat Grp, Barcelona, Spain
[4] NYU, Tandon Sch Engn, New York, NY 10003 USA
[5] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
FORCE MICROSCOPE CANTILEVERS; THERMOCHEMICAL NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FEATURE SIZE; SILICON; POLYMER; TIP; DESIGN; SPEED; MOS2;
D O I
10.1038/s43586-022-00110-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices.
引用
收藏
页数:21
相关论文
共 91 条
  • [1] Adeyeye AO, 2015, HBK SURF SCI, V5, P1, DOI 10.1016/B978-0-444-62634-9.00001-1
  • [2] Thermochemical scanning probe lithography of protein gradients at the nanoscale
    Albisetti, E.
    Carroll, K. M.
    Lu, X.
    Curtis, J. E.
    Petti, D.
    Bertacco, R.
    Riedo, E.
    [J]. NANOTECHNOLOGY, 2016, 27 (31)
  • [3] Albisetti E, 2016, NAT NANOTECHNOL, V11, P545, DOI [10.1038/nnano.2016.25, 10.1038/NNANO.2016.25]
  • [4] Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets
    Albisetti, Edoardo
    Tacchi, Silvia
    Silvani, Raffaele
    Scaramuzzi, Giuseppe
    Finizio, Simone
    Wintz, Sebastian
    Rinaldi, Christian
    Cantoni, Matteo
    Raabe, Jorg
    Carlotti, Giovanni
    Bertacco, Riccardo
    Riedo, Elisa
    Petti, Daniela
    [J]. ADVANCED MATERIALS, 2020, 32 (09)
  • [5] Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures
    Albisetti, Edoardo
    Pettio, Daniela
    Sala, Giacomo
    Silvani, Raffaele
    Tacchi, Silvia
    Finizio, Simone
    Wintz, Sebastian
    Calo, Annalisa
    Zheng, Xiaorui
    Raabe, Jorg
    Riedo, Elisa
    Bertacco, Riccardo
    [J]. COMMUNICATIONS PHYSICS, 2018, 1
  • [6] Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems
    Albisetti, Edoardo
    Calo, Annalisa
    Spieser, Martin
    Knoll, Armin W.
    Riedo, Elisa
    Petti, Daniela
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (16)
  • [7] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [8] The 2021 Magnonics Roadmap
    Barman, Anjan
    Gubbiotti, Gianluca
    Ladak, S.
    Adeyeye, A. O.
    Krawczyk, M.
    Grafe, J.
    Adelmann, C.
    Cotofana, S.
    Naeemi, A.
    Vasyuchka, V., I
    Hillebrands, B.
    Nikitov, S. A.
    Yu, H.
    Grundler, D.
    Sadovnikov, A., V
    Grachev, A. A.
    Sheshukova, S. E.
    Duquesne, J-Y
    Marangolo, M.
    Csaba, G.
    Porod, W.
    Demidov, V. E.
    Urazhdin, S.
    Demokritov, S. O.
    Albisetti, E.
    Petti, D.
    Bertacco, R.
    Schultheiss, H.
    Kruglyak, V. V.
    Poimanov, V. D.
    Sahoo, S.
    Sinha, J.
    Yang, H.
    Munzenburg, M.
    Moriyama, T.
    Mizukami, S.
    Landeros, P.
    Gallardo, R. A.
    Carlotti, G.
    Kim, J-, V
    Stamps, R. L.
    Camley, R. E.
    Rana, B.
    Otani, Y.
    Yu, W.
    Yu, T.
    Bauer, G. E. W.
    Back, C.
    Uhrig, G. S.
    Dobrovolskiy, O., V
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (41)
  • [9] Magnetism in two-dimensional van der Waals materials
    Burch, Kenneth S.
    Mandrus, David
    Park, Je-Geun
    [J]. NATURE, 2018, 563 (7729) : 47 - 52
  • [10] Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy
    Calo, Annalisa
    Romin, Yevgeniy
    Srouji, Rami
    Zambirinis, Constantinos P.
    Fan, Ning
    Santella, Anthony
    Feng, Elvin
    Fujisawa, Sho
    Turkekul, Mesruh
    Huang, Sharon
    Simpson, Amber L.
    D'Angelica, Michael
    Jarnagin, William R.
    Manova-Todorova, Katia
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)