Thermal scanning probe lithography

被引:34
作者
Albisetti, Edoardo [1 ]
Calo, Annalisa [2 ,3 ]
Zanut, Alessandra [4 ]
Zheng, Xiaorui [5 ]
de Peppo, Giuseppe Maria [4 ]
Riedo, Elisa [4 ]
机构
[1] Polytech Univ Milan, Dept Phys, Milan, Italy
[2] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[3] Inst Bioengn Catalonia IBEC, Nanoscale Bioelect Characterizat Grp, Barcelona, Spain
[4] NYU, Tandon Sch Engn, New York, NY 10003 USA
[5] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
FORCE MICROSCOPE CANTILEVERS; THERMOCHEMICAL NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FEATURE SIZE; SILICON; POLYMER; TIP; DESIGN; SPEED; MOS2;
D O I
10.1038/s43586-022-00110-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices.
引用
收藏
页数:21
相关论文
共 91 条
[1]  
Adeyeye AO, 2015, HBK SURF SCI, V5, P1, DOI 10.1016/B978-0-444-62634-9.00001-1
[2]   Thermochemical scanning probe lithography of protein gradients at the nanoscale [J].
Albisetti, E. ;
Carroll, K. M. ;
Lu, X. ;
Curtis, J. E. ;
Petti, D. ;
Bertacco, R. ;
Riedo, E. .
NANOTECHNOLOGY, 2016, 27 (31)
[3]  
Albisetti E, 2016, NAT NANOTECHNOL, V11, P545, DOI [10.1038/NNANO.2016.25, 10.1038/nnano.2016.25]
[4]   Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets [J].
Albisetti, Edoardo ;
Tacchi, Silvia ;
Silvani, Raffaele ;
Scaramuzzi, Giuseppe ;
Finizio, Simone ;
Wintz, Sebastian ;
Rinaldi, Christian ;
Cantoni, Matteo ;
Raabe, Jorg ;
Carlotti, Giovanni ;
Bertacco, Riccardo ;
Riedo, Elisa ;
Petti, Daniela .
ADVANCED MATERIALS, 2020, 32 (09)
[5]   Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures [J].
Albisetti, Edoardo ;
Pettio, Daniela ;
Sala, Giacomo ;
Silvani, Raffaele ;
Tacchi, Silvia ;
Finizio, Simone ;
Wintz, Sebastian ;
Calo, Annalisa ;
Zheng, Xiaorui ;
Raabe, Jorg ;
Riedo, Elisa ;
Bertacco, Riccardo .
COMMUNICATIONS PHYSICS, 2018, 1
[6]   Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems [J].
Albisetti, Edoardo ;
Calo, Annalisa ;
Spieser, Martin ;
Knoll, Armin W. ;
Riedo, Elisa ;
Petti, Daniela .
APPLIED PHYSICS LETTERS, 2018, 113 (16)
[7]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[8]   The 2021 Magnonics Roadmap [J].
Barman, Anjan ;
Gubbiotti, Gianluca ;
Ladak, S. ;
Adeyeye, A. O. ;
Krawczyk, M. ;
Grafe, J. ;
Adelmann, C. ;
Cotofana, S. ;
Naeemi, A. ;
Vasyuchka, V., I ;
Hillebrands, B. ;
Nikitov, S. A. ;
Yu, H. ;
Grundler, D. ;
Sadovnikov, A., V ;
Grachev, A. A. ;
Sheshukova, S. E. ;
Duquesne, J-Y ;
Marangolo, M. ;
Csaba, G. ;
Porod, W. ;
Demidov, V. E. ;
Urazhdin, S. ;
Demokritov, S. O. ;
Albisetti, E. ;
Petti, D. ;
Bertacco, R. ;
Schultheiss, H. ;
Kruglyak, V. V. ;
Poimanov, V. D. ;
Sahoo, S. ;
Sinha, J. ;
Yang, H. ;
Munzenburg, M. ;
Moriyama, T. ;
Mizukami, S. ;
Landeros, P. ;
Gallardo, R. A. ;
Carlotti, G. ;
Kim, J-, V ;
Stamps, R. L. ;
Camley, R. E. ;
Rana, B. ;
Otani, Y. ;
Yu, W. ;
Yu, T. ;
Bauer, G. E. W. ;
Back, C. ;
Uhrig, G. S. ;
Dobrovolskiy, O., V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (41)
[9]   Magnetism in two-dimensional van der Waals materials [J].
Burch, Kenneth S. ;
Mandrus, David ;
Park, Je-Geun .
NATURE, 2018, 563 (7729) :47-52
[10]   Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy [J].
Calo, Annalisa ;
Romin, Yevgeniy ;
Srouji, Rami ;
Zambirinis, Constantinos P. ;
Fan, Ning ;
Santella, Anthony ;
Feng, Elvin ;
Fujisawa, Sho ;
Turkekul, Mesruh ;
Huang, Sharon ;
Simpson, Amber L. ;
D'Angelica, Michael ;
Jarnagin, William R. ;
Manova-Todorova, Katia .
SCIENTIFIC REPORTS, 2020, 10 (01)