A New Support Vector Classification Algorithm with Parametric-Margin Model

被引:3
|
作者
Hao, Pei-Yi [1 ]
Tsai, Lung-Biao [1 ]
Lin, Min-Shiu [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Informat Management, Kaohsiung 807, Taiwan
来源
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8 | 2008年
关键词
D O I
10.1109/IJCNN.2008.4633826
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new algorithm for Support Vector classification is described. It is shown how to use the parametric margin model with non-constant radius. This is useful in many cases, especially when the noise is heteroscedastic, that is, where it depends on x. Moreover, for a priori chosen v, the proposed new SV classification algorithm has advantage of using the parameter 0 <= nu < 1 on controlling the number of support vectors. To be more precise, nu is an upper bound on the fraction of margin errors and a lower bound of the fraction of support vectors. Hence, the selection of v is more intuitive. The algorithm is analyzed theoretically and experimentally.
引用
收藏
页码:420 / 425
页数:6
相关论文
共 50 条
  • [1] Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm
    Moosaei, Hossein
    Bazikar, Fatemeh
    Ketabchi, Saeed
    Hladik, Milan
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2634 - 2654
  • [2] Least squares twin parametric-margin support vector machine for classification
    Shao, Yuan-Hai
    Wang, Zhen
    Chen, Wei-Jie
    Deng, Nai-Yang
    APPLIED INTELLIGENCE, 2013, 39 (03) : 451 - 464
  • [3] Least squares twin parametric-margin support vector machine for classification
    Yuan-Hai Shao
    Zhen Wang
    Wei-Jie Chen
    Nai-Yang Deng
    Applied Intelligence, 2013, 39 : 451 - 464
  • [4] Structural twin parametric-margin support vector machine for binary classification
    Peng, Xinjun
    Wang, Yifei
    Xu, Dong
    KNOWLEDGE-BASED SYSTEMS, 2013, 49 : 63 - 72
  • [5] Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm
    Hossein Moosaei
    Fatemeh Bazikar
    Saeed Ketabchi
    Milan Hladík
    Applied Intelligence, 2022, 52 : 2634 - 2654
  • [6] A Multiclass Nonparallel Parametric-Margin Support Vector Machine
    Du, Shu-Wang
    Zhang, Ming-Chuan
    Chen, Pei
    Sun, Hui-Feng
    Chen, Wei-Jie
    Shao, Yuan-Hai
    INFORMATION, 2021, 12 (12)
  • [7] MPMSVC: Multiple Parametric-Margin Support Vector Clustering
    Jiang, Yi-bo
    Chen, Wei-Jie
    Wang, Yu-Qing
    Zhang, Ming-chuan
    Shao, Yuan-Hai
    IEEE ACCESS, 2021, 9 : 24499 - 24512
  • [8] Online Model-Based Twin Parametric-Margin Support Vector Machine
    Peng, Xinjun
    Kong, Lingyan
    Chen, Dongjing
    Xu, Dong
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 741 - 752
  • [9] Geometric algorithms for parametric-margin ν-support vector machine
    Peng, Xinjun
    Xu, Dong
    NEUROCOMPUTING, 2013, 99 : 197 - 205
  • [10] Improvements on twin parametric-margin support vector machine
    Peng, Xinjun
    Kong, Lingyan
    Chen, Dongjing
    NEUROCOMPUTING, 2015, 151 : 857 - 863