A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care

被引:9
作者
Reix, Nathalie [1 ,2 ]
Lodi, Massimo [3 ,4 ]
Jankowski, Stephane [5 ]
Moliere, Sebastien [6 ]
Luporsi, Elisabeth [7 ]
Leblanc, Suzanne [1 ,8 ]
Scheer, Louise [3 ]
Ibnouhsein, Issam [5 ]
Benabu, Julie-Charlotte [3 ]
Gabriele, Victor [3 ]
Guggiola, Alberto [5 ]
Lessinger, Jean-Marc [1 ]
Chenard, Marie-Pierre [8 ]
Alpy, Fabien [4 ]
Bellocq, Jean-Pierre [8 ]
Neuberger, Karl [5 ]
Tomasetto, Catherine [4 ]
Mathelin, Carole [3 ,4 ,9 ]
机构
[1] Hop Univ Strasbourg, Lab Biochim & Biol Mol, 1 Pl Hop, Strasbourg, France
[2] Univ Strasbourg, CNRS, FMTS, ICube UMR 7357, 4 Rue Kirschleger, Strasbourg, France
[3] Hop Univ Strasbourg, Unite Senol, Strasbourg, France
[4] Univ Strasbourg, Inst Genet & Biol Mol & Cellulaire, Dept Funct Genom & Canc, Illkirch Graffenstaden, France
[5] Quantmetry, Paris, France
[6] Hop Univ Strasbourg, Dept Imaging, Strasbourg, France
[7] Hop Mercy, Ctr Hosp Reg Metz Thionville, Serv Oncol Med, Metz, France
[8] Hop Univ Strasbourg, Serv Pathol, Strasbourg, France
[9] Ctr Hosp Sarrebourg, Sarrebourg, France
关键词
breast cancer; chemotherapy; machine learning; over- and under-treatment; survival; uPA/PAI-1; INTERNATIONAL EXPERT CONSENSUS; TUMOR-MARKERS; PRACTICE GUIDELINES; AMERICAN SOCIETY; PRIMARY THERAPY; EUROPEAN GROUP; RECOMMENDATIONS; BIOMARKERS; ONCOLOGY; DIAGNOSIS;
D O I
10.1515/cclm-2018-1065
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods: We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results: We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N <= 3, Ki 67 <= 30% tumors, but are considered in association with at least one additional marker such as Ki 67 > 14%, vascular invasion and ER-H score <150. Conclusions: This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.
引用
收藏
页码:901 / 910
页数:10
相关论文
共 25 条
[1]   High levels of uPA and PAI-1 predict a good response to anthracyclines [J].
Borstnar, Simona ;
Sadikov, Aleksander ;
Mozina, Barbara ;
Cufer, Tanja .
BREAST CANCER RESEARCH AND TREATMENT, 2010, 121 (03) :615-624
[2]  
Breiman L., 1984, Classification and_Regression_Trees. The Wadsworth and Brooks-Cole statistics-probability series
[3]   Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015 [J].
Coates, A. S. ;
Winer, E. P. ;
Goldhirsch, A. ;
Gelber, R. D. ;
Gnant, M. ;
Piccart-Gebhart, M. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2015, 26 (08) :1533-1546
[4]   Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM) [J].
Duffy, M. J. ;
Harbeck, N. ;
Nap, M. ;
Molina, R. ;
Nicolini, A. ;
Senkus, E. ;
Cardoso, F. .
EUROPEAN JOURNAL OF CANCER, 2017, 75 :284-298
[5]   Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009 [J].
Goldhirsch, A. ;
Ingle, J. N. ;
Gelber, R. D. ;
Coates, A. S. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2009, 20 (08) :1319-1329
[6]   Prediction of pathological response to neoadjuvant treatment in rectal cancer with a two-protein immunohistochemical score derived from stromal gene-profiling [J].
Goncalves-Ribeiro, S. ;
Sanz-Pamplona, R. ;
Vidal, A. ;
Sanjuan, X. ;
Guillen Diaz-Maroto, N. ;
Soriano, A. ;
Guardiola, J. ;
Albert, N. ;
Martinez-Villacampa, M. ;
Lopez, I. ;
Santos, C. ;
Serra-Musach, J. ;
Salazar, R. ;
Capella, G. ;
Villanueva, A. ;
Mollevi, D. G. .
ANNALS OF ONCOLOGY, 2017, 28 (09) :2160-2168
[7]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[8]   AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2015 [J].
Hanf, Volker ;
Schuetz, Florian ;
Liedtke, Cornelia ;
Thill, Marc .
BREAST CARE, 2015, 10 (03) :189-197
[9]   American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer [J].
Harris, Lyndsay ;
Fritsche, Herbert ;
Mennel, Robert ;
Norton, Larry ;
Ravdin, Peter ;
Taube, Sheila ;
Somerfield, Mark R. ;
Hayes, Daniel F. ;
Bast, Robert C., Jr. .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (33) :5287-5312
[10]   Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline [J].
Harris, Lyndsay N. ;
Ismaila, Nofisat ;
McShane, Lisa M. ;
Andre, Fabrice ;
Collyar, Deborah E. ;
Gonzalez-Angulo, Ana M. ;
Hammond, Elizabeth H. ;
Kuderer, Nicole M. ;
Liu, Minetta C. ;
Mennel, Robert G. ;
Van Poznak, Catherine ;
Bast, Robert C. ;
Hayes, Daniel F. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (10) :1134-+