Stacking-dependent electronic properties of aluminene based multilayer van der Waals heterostructures

被引:4
作者
Pandey, Dhanshree [1 ,2 ]
Kumar, Ashok [3 ]
Chakrabarti, Aparna [1 ,2 ]
Pandey, Ravindra [4 ]
机构
[1] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
[2] Raja Ramanna Ctr Adv Technol, Human Resources Dev Sect, Theory & Simulat Lab, Indore 452013, India
[3] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Phys Sci, Bathinda 151001, India
[4] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
关键词
Aluminene; Van der Waals heterostructures; Density functional theory; Band gap; GRAPHENE; ATOMS;
D O I
10.1016/j.commatsci.2020.109952
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aluminene, one of the group III elemental monolayers, is predicted to be stable in the honeycomb configuration with metallic characteristics. In this paper, we consider aluminene-based heterostructures, investigating their stability, structural and electronic properties. The results based on density functional theory find that the interaction between aluminene and BN or graphene monolayers is weak, and is dominated by the van der Waals forces. The electronic structures calculated using the HSE06 functional show aluminene/graphene and aluminene/BN bilayers to be metallic. Likewise, graphene/aluminene/graphene trilayers are predicted to be metallic. However, BN/aluminene/BN trilayers are predicted to be semiconducting in nature with finite gaps. The results suggest that the interaction of Al atoms with N atoms facilitates the opening up of the gap in trilayer heterostructures, unlike the graphene/BN heterostructures, where inequivalence of the carbon lattice leads to the bandgap. The stacking-dependence of the electronic structure is affirmed by the electron tunneling characteristics calculated for the trilayer heterostructures. The predicted relationship between topology and electronic structure can, therefore, be exploited to tailor the electronic properties of aluminene-based heterostructures.
引用
收藏
页数:11
相关论文
共 44 条
  • [1] Germanene: the germanium analogue of graphene
    Acun, A.
    Zhang, L.
    Bampoulis, P.
    Farmanbar, M.
    van Houselt, A.
    Rudenko, A. N.
    Lingenfelder, M.
    Brocks, G.
    Poelsema, B.
    Katsnelson, M. I.
    Zandvliet, H. J. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (44)
  • [2] Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties
    Akturk, E.
    Akturk, O. Uzengi
    Ciraci, S.
    [J]. PHYSICAL REVIEW B, 2016, 94 (01)
  • [3] ATOMS IN MOLECULES
    BADER, RFW
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) : 9 - 15
  • [4] Van Der Waals Density Functionals for Graphene Layers and Graphite
    Birowska, M.
    Milowska, K.
    Majewski, J. A.
    [J]. ACTA PHYSICA POLONICA A, 2011, 120 (05) : 845 - 848
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Chakrabarti A., 2016, Graphene Science Handbook: Size-Dependent Properties, P221
  • [8] Giovannetti G, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.073103
  • [9] Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    Grimme, Stefan
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) : 1787 - 1799
  • [10] Effect of Si doping on the electronic properties of BN monolayer
    Gupta, Sanjeev K.
    He, Haiying
    Banyai, Douglas
    Si, Mingsu
    Pandey, Ravindra
    Karna, Shashi P.
    [J]. NANOSCALE, 2014, 6 (10) : 5526 - 5531