Fabrication of large-scale uniform submicron inverted pyramid pit arrays on silicon substrates by laser interference lithography

被引:4
作者
Xu, Ran [1 ,2 ]
Deng, Zhen [1 ,2 ]
Yue, Yin [1 ,2 ]
Wang, Sen [1 ,2 ]
Li, Xinxin [1 ,2 ]
Ma, Ziguang [1 ,2 ]
Jiang, Yang [1 ,2 ]
Wang, Lu [1 ,2 ]
Du, Chunhua [1 ,2 ]
Jia, Haiqiang [1 ,2 ]
Wang, Wenxin [1 ,2 ]
Chen, Hong [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Patterned substrates; Wet etch; Photoresist; Inverted pyramid pit arrays; Laser interference lithography; ALKALINE-SOLUTIONS; QUANTUM; TEMPERATURE; LATTICES; DETECTOR; GROWTH; PLANES;
D O I
10.1016/j.vacuum.2019.03.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new method for fabricating large-scale uniform high-quality submicron inverted pyramid pit arrays by laser interference lithography (LIL), combined with dry etching and wet etching. In this process, uniform photoresist dot arrays are fabricated by LIL for 2-inch wafer. Dry etching is used to ensure the formation of the fluorocarbon organic polymer (FOP) mask layer. Wet etching parameters are investigated in details and inverted pyramid pits with {111} sidewalls are formed by anisotropic wet etching. Using this method, we have successfully produced uniform high-quality inverted pyramid pit arrays with the average size of 240 nm and the period of 450 nm. The size of pits can be tailored between 200 nm and 400 nm and the size deviation of inverted pyramid pits is 6.7% over the whole 2-inch wafer. This method offers a simple, less time consuming and cost-effective process of micro-nano pattern fabrication. Besides, GeSi QDs are quantitatively investigated by a nucleation model which shows GeSi QDs are preferentially grown at the tip of inverted pyramid pit and four intersection lines of two {111} planes inside the pit.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 38 条
  • [1] Preparation of regularly ordered Ge quantum dot lattices in amorphous matrices
    Buljan, M.
    Desnica, U. V.
    Bogdanovic-Radovic, I.
    Radic, N.
    Ivanda, M.
    Drazic, G.
    Bernstorff, S.
    Holy, V.
    [J]. VACUUM, 2012, 86 (06) : 733 - 736
  • [2] Chen H. -M., 2011, NANOTECHNOLOGY, V23
  • [3] Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/nphoton.2016.21, 10.1038/NPHOTON.2016.21]
  • [4] Scalloping removal on DRIE via using low concentrated alkaline solutions at low temperature
    Defforge, Thomas
    Song, Xi
    Gautier, Gael
    Tillocher, Thomas
    Dussart, Remi
    Kouassi, Sebastien
    Tran-Van, Francois
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2011, 170 (1-2) : 114 - 120
  • [5] ZnS shell-like CdS quantum dot-sensitized solar cell grown by SILAR approach; effect of electrolyte, counter electrode, and shell thickness
    Ganjian, Mahya
    Kolandouz, Mohammadreza
    Aletayeb, Arash
    Norouzi, Maryam
    Ebrahimi, Parvin
    Pourjafari, Saeed
    Mousavi, Matin Sadat Sanei
    [J]. VACUUM, 2017, 146 : 548 - 553
  • [6] Fabrication of 2D, 1D and 0D ordered metallic nanostructures
    González, EM
    Villegas, JE
    Jaque, D
    Navarro, E
    Vicent, JL
    [J]. VACUUM, 2002, 67 (3-4) : 693 - 698
  • [7] Gray D. E., 1972, COORDINATING
  • [8] Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates
    Grydlik, Martyna
    Langer, Gregor
    Fromherz, Thomas
    Schaeffler, Friedrich
    Brehm, Moritz
    [J]. NANOTECHNOLOGY, 2013, 24 (10)
  • [9] Facile synthesis, structural, electrical and dielectric properties of CdSe/CdS core-shell quantum dots
    Hamood, R.
    Abd El-Sadek, M. S.
    Gadalla, A.
    [J]. VACUUM, 2018, 157 : 291 - 298
  • [10] Effects of different modified underlayer surfaces on growth and optical properties of InGaN quantum dots
    Han, XX
    Li, JM
    Wu, JJ
    Wang, XH
    Li, DB
    Liu, XL
    Han, PD
    Zhu, QS
    Wang, ZG
    [J]. VACUUM, 2005, 77 (03) : 307 - 314