On rings whose prime ideals are completely prime

被引:6
作者
Kim, NK [1 ]
Lee, Y
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[3] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[4] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/S0022-4049(01)00148-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate in this paper rings whose proper ideals are 2-primal. We concentrate on the connections between this condition and related concepts to this condition, and several kinds of pi-regularities of rings which satisfy this condition. Moreover, we add counterexamples to the situations that occur naturally in the process of this note. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
[21]   Fuzzy prime ideals in Γ-rings [J].
Dutta, T. K. ;
Chanda, Tanusree .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2007, 30 (01) :65-73
[22]   FUZZY PRIME IDEALS OF RINGS [J].
SWAMY, UM ;
SWAMY, KLN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (01) :94-103
[23]   PRIME IDEALS IN GAMMA RINGS [J].
KYUNO, S .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (02) :375-379
[24]   PRIME IDEALS OF BOOLEAN RINGS [J].
OAKLAND, DO .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06) :968-&
[25]   PRIME IDEALS IN FIXED RINGS [J].
MONTGOMERY, S .
COMMUNICATIONS IN ALGEBRA, 1981, 9 (04) :423-449
[26]   PRIME IDEALS IN REPRESENTATION RINGS [J].
DRESS, AWM ;
KLETZING, DR .
MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (04) :285-300
[27]   (σ, τ)-☆-Jordan ideals in ☆-prime rings [J].
Ashraf, Mohammad ;
Parveen, Nazia .
GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) :321-329
[28]   On prime left ideals in Γ-rings [J].
Satyanarayana, B ;
Kumar, TVP ;
Rao, MS .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (06) :687-693
[29]   CHAIN RINGS AND PRIME IDEALS [J].
BRUNGS, HH ;
TORNER, G .
ARCHIV DER MATHEMATIK, 1976, 27 (03) :253-260
[30]   Prime ideals of fixed rings [J].
Taylor, J .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3463-3488