Strong invariance principles for sequential Bahadur-Kiefer and Vervaat error processes of long-range dependent sequences

被引:11
作者
Csorgo, Miklos
Szyszkowicz, Barbara
Wang, Lihong
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
long-range dependence; sequential empirical and quantile processes; sequential Bahadur-Kiefer process; sequential Vervaat and Vervaat error processes; strong invariance principles;
D O I
10.1214/009053606000000164
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study strong approximations (invariance principles) of the sequential uniform and general Bahadur-Kiefer processes of long-range dependent sequences. We also investigate the strong and weak asymptotic behavior of the sequential Vervaat process, that is, the integrated sequential Bahadur-Kiefer process, properly normalized, as well as that of its deviation from its limiting process, the so-called Vervaat error process. It is well known that the Bahadur-Kiefer and the Vervaat error processes cannot converge weakly in the i.i.d. case. In contrast to this, we conclude that the Bahadur-Kiefer and Vervaat error processes, as well as their sequential versions, do converge weakly to a Dehling-Taqqu type limit process for certain long-range dependent sequences.
引用
收藏
页码:1013 / 1044
页数:32
相关论文
共 36 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 1993, WEIGHTED APPROXIMATI
[3]  
[Anonymous], EMPIRICAL PROCESS TE
[4]   A NOTE ON QUANTILES IN LARGE SAMPLES [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03) :577-&
[5]  
BINGHAM N. H., 1987, Encyclopedia of Mathematics and its Applications, V27
[6]   Pointwise and uniform asymptotics of the Vervaat error process [J].
Csáki, E ;
Csörgo, M ;
Földes, A ;
Shi, Z ;
Zitikis, R .
JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (04) :845-875
[7]   LAW OF ITERATED LOGARITHM FOR NORMALIZED EMPIRICAL DISTRIBUTION FUNCTION [J].
CSAKI, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 38 (02) :147-167
[8]  
Csörgö M, 2002, LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I, P389
[9]  
Csorgo M, 1998, HANDB STAT, V16, P631, DOI 10.1016/S0169-7161(98)16023-6
[10]   On the Vervaat and Vervaat-error processes [J].
Csörgo, M ;
Zitikis, R .
ACTA APPLICANDAE MATHEMATICAE, 1999, 58 (1-3) :91-105