Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models

被引:33
作者
Steiner, N. S. [1 ,2 ]
Christian, J. R. [1 ,2 ]
Six, K. D. [3 ]
Yamamoto, A. [4 ]
Yamamoto-Kawai, M. [5 ]
机构
[1] Fisheries & Oceans Canada, Inst Ocean Sci, POB 6000,9860 West Saanich Rd, Sidney, BC V8L 4B2, Canada
[2] Canadian Ctr Climate Modelling & Anal, Sidney, BC V8L 4B2, Canada
[3] Max Planck Inst Meteorol, Dept Ocean & Earth Syst, D-20146 Hamburg, Germany
[4] Univ Tokyo, Div Climate Syst Res, Chiba, Japan
[5] Tokyo Univ Marine Sci & Technol, Dept Ocean Sci, Tokyo, Japan
关键词
acidification; calcium carbonate saturation state; arctic; earth system models; CMIP5; CLIMATE-CHANGE PROJECTIONS; ECOSYSTEM MODEL; PART I; CARBON; SEA; CO2; UNDERSATURATION; 21ST-CENTURY; FORMULATION; ARAGONITE;
D O I
10.1002/2013JC009069
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Six Earth system models that include an interactive carbon cycle and have contributed results to the 5th Coupled Model Intercomparison Project (CMIP5) are evaluated with respect to Arctic Ocean acidification. Projections under Representative Concentration Pathways (RCPs) 8.5 and 4.5 consistently show reductions in the bidecadal mean surface pH from about 8.1 in 1986-2005 to 7.7/7.9 by 2066-2085 in the Canada Basin, closely linked to reductions in the calcium carbonate saturation state (A,C) from about 1.4 (2.0) to 0.7 (1.0) for aragonite (calcite) for RCP8.5. The large but opposite effects of dilution and biological drawdown of DIC and dilution of alkalinity lead to a small seasonal amplitude change in , as well as intermodel differences in the timing and sign of the summer minimum. The Canada Basin shows a characteristic layering in : affected by ice melt and inflowing Pacific water, shallow undersaturated layers form at the surface and subsurface, creating a shallow saturation horizon which expands from the surface downward. This is in addition to the globally observed deep saturation horizon which is continuously expanding upward with increasing CO2 uptake. The Eurasian Basin becomes undersaturated much later than the rest of the Arctic. These CMIP5 model results strengthen earlier findings, although large intermodel differences remain: Below 200 m (A) varies by up to 1.0 in the Canada Basin and the deep saturation horizon varies from 2000 to 4000 m among the models. Differences of projected acidification changes are primarily related to sea ice retreat and responses of wind mixing and stratification. Key Points CMIP5 model projections show a consistently intensifying Arctic acidification An enhanced freeze-melt cycle does not enhance the seasonal amplitude of omega Acidification progresses in response to sea ice retreat and stratification
引用
收藏
页码:332 / 347
页数:16
相关论文
共 52 条
  • [21] Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison
    Friedlingstein, P.
    Cox, P.
    Betts, R.
    Bopp, L.
    Von Bloh, W.
    Brovkin, V.
    Cadule, P.
    Doney, S.
    Eby, M.
    Fung, I.
    Bala, G.
    John, J.
    Jones, C.
    Joos, F.
    Kato, T.
    Kawamiya, M.
    Knorr, W.
    Lindsay, K.
    Matthews, H. D.
    Raddatz, T.
    Rayner, P.
    Reick, C.
    Roeckner, E.
    Schnitzler, K. -G.
    Schnur, R.
    Strassmann, K.
    Weaver, A. J.
    Yoshikawa, C.
    Zeng, N.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (14) : 3337 - 3353
  • [22] Gattuso J.P., 2011, Ocean acidification
  • [23] Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5
    Giorgetta, Marco A.
    Jungclaus, Johann
    Reick, Christian H.
    Legutke, Stephanie
    Bader, Juergen
    Boettinger, Michael
    Brovkin, Victor
    Crueger, Traute
    Esch, Monika
    Fieg, Kerstin
    Glushak, Ksenia
    Gayler, Veronika
    Haak, Helmuth
    Hollweg, Heinz-Dieter
    Ilyina, Tatiana
    Kinne, Stefan
    Kornblueh, Luis
    Matei, Daniela
    Mauritsen, Thorsten
    Mikolajewicz, Uwe
    Mueller, Wolfgang
    Notz, Dirk
    Pithan, Felix
    Raddatz, Thomas
    Rast, Sebastian
    Redler, Rene
    Roeckner, Erich
    Schmidt, Hauke
    Schnur, Reiner
    Segschneider, Joachim
    Six, Katharina D.
    Stockhause, Martina
    Timmreck, Claudia
    Wegner, Joerg
    Widmann, Heinrich
    Wieners, Karl-H
    Claussen, Martin
    Marotzke, Jochem
    Stevens, Bjorn
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (03) : 572 - 597
  • [24] Data-based estimation of anthropogenic carbon and acidification in the Weddell Sea on a decadal timescale
    Hauck, J.
    Hoppema, M.
    Bellerby, R. G. J.
    Voelker, C.
    Wolf-Gladrow, D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [25] Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise
    Honjo, Susumu
    Krishfield, Richard A.
    Eglinton, Timothy I.
    Manganini, Steven J.
    Kemp, John N.
    Doherty, Kenneth
    Hwang, Jeomshik
    McKee, Theresa K.
    Takizawa, Takatoshi
    [J]. PROGRESS IN OCEANOGRAPHY, 2010, 85 (3-4) : 137 - 170
  • [26] Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations
    Ilyina, Tatiana
    Six, Katharina D.
    Segschneider, Joachim
    Maier-Reimer, Ernst
    Li, Hongmei
    Nunez-Riboni, Ismael
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (02): : 287 - 315
  • [27] An ecosystem model for the North Pacific embedded in a general circulation model Part I: Model description and characteristics of spatial distributions of biological variables
    Kawamiya, M
    Kishi, MJ
    Suginohara, N
    [J]. JOURNAL OF MARINE SYSTEMS, 2000, 25 (02) : 129 - 157
  • [28] Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments
    Loose, B.
    McGillis, W. R.
    Schlosser, P.
    Perovich, D.
    Takahashi, T.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [29] Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium
    Lueker, TJ
    Dickson, AG
    Keeling, CD
    [J]. MARINE CHEMISTRY, 2000, 70 (1-3) : 105 - 119
  • [30] The HadGEM2 family of Met Office Unified Model climate configurations
    Martin, G. M.
    Bellouin, N.
    Collins, W. J.
    Culverwell, I. D.
    Halloran, P. R.
    Hardiman, S. C.
    Hinton, T. J.
    Jones, C. D.
    McDonald, R. E.
    McLaren, A. J.
    O'Connor, F. M.
    Roberts, M. J.
    Rodriguez, J. M.
    Woodward, S.
    Best, M. J.
    Brooks, M. E.
    Brown, A. R.
    Butchart, N.
    Dearden, C.
    Derbyshire, S. H.
    Dharssi, I.
    Doutriaux-Boucher, M.
    Edwards, J. M.
    Falloon, P. D.
    Gedney, N.
    Gray, L. J.
    Hewitt, H. T.
    Hobson, M.
    Huddleston, M. R.
    Hughes, J.
    Ineson, S.
    Ingram, W. J.
    James, P. M.
    Johns, T. C.
    Johnson, C. E.
    Jones, A.
    Jones, C. P.
    Joshi, M. M.
    Keen, A. B.
    Liddicoat, S.
    Lock, A. P.
    Maidens, A. V.
    Manners, J. C.
    Milton, S. F.
    Rae, J. G. L.
    Ridley, J. K.
    Sellar, A.
    Senior, C. A.
    Totterdell, I. J.
    Verhoef, A.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) : 723 - 757