Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6

被引:27
作者
Wan, Z. Y. [1 ]
Zhang, Z. [1 ]
Zhou, X. [1 ]
机构
[1] Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Friction stir welding; Coupled thermo-mechanical model; Material flow; Grain size; MECHANICAL-PROPERTIES; MATERIAL BEHAVIORS; TOOL; TEMPERATURE; SIMULATION; PARAMETERS; FLOW;
D O I
10.1007/s00170-016-9632-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A thermo-mechanical re-meshing model of friction stir welding (FSW) process of AA6082-T6 is used with a point tracking method for the determination of the final locations of the particles. The relations between the field variables and the material flows in the FSW process are discussed. Then the grain sizes after recrystallization are calculated. The comparison with the numerical and the experimental results in published literatures shows the validity of the proposed model. Based on the Zener-Hollomon parameter, the effects of strain rate and temperature on recrystallization are further discussed.
引用
收藏
页码:3567 / 3574
页数:8
相关论文
共 35 条
[1]   Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing [J].
Arora, H. S. ;
Singh, H. ;
Dhindaw, B. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 543 :231-242
[2]   Simulation and experimental investigation of FSP of AZ91 magnesium alloy [J].
Asadi, P. ;
Mandavinejad, R. A. ;
Tutunchilar, S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (21) :6469-6477
[3]   Design of the friction stir welding tool using the continuum based FEM model [J].
Buffa, G ;
Hua, J ;
Shivpuri, R ;
Fratini, L .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 419 (1-2) :381-388
[4]  
Cederqvist L, 2001, WELD J, V80, p281S
[5]   Parametric study of transient temperature distribution in FSW of 304L stainless steel [J].
Chansoria, P. ;
Solanki, P. ;
Dasgupta, M. S. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 80 (5-8) :1223-1239
[6]   Model for predicting heat generation and temperature in friction stir welding from the material properties [J].
Colegrove, P. A. ;
Shercliff, H. R. ;
Zettler, R. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2007, 12 (04) :284-297
[7]   A perspective on residual stresses in welding [J].
De, A. ;
DebRoy, T. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2011, 16 (03) :204-208
[8]   Numerical simulation of fatigue crack propagation in friction stir welded joint made of Al 2024-T351 alloy [J].
Durdevic, Andrijana ;
Zivojinovic, Danijela ;
Grbovic, Aleksandar ;
Sedmak, Aleksandar ;
Rakin, Marko ;
Dascau, Horia ;
Kirin, Snezana .
ENGINEERING FAILURE ANALYSIS, 2015, 58 :477-484
[9]   Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy [J].
Fadaeifard, Firouz ;
Matori, Khamirul Amin ;
Toozandehjani, Meysam ;
Daud, Abdul Razak ;
Ariffin, Mohd Khairol Anuar Mohd ;
Othman, Norinsan Kamil ;
Gharavi, Farhad ;
Ramzani, Abdul Hadi ;
Ostovan, Farhad .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (04) :1004-1011
[10]   Microstructural evolution ahead of the tool in aluminum friction stir welds [J].
Fonda, R. W. ;
Knipling, K. E. ;
Bingert, J. F. .
SCRIPTA MATERIALIA, 2008, 58 (05) :343-348