In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics

被引:384
作者
Ai, Xiangzhao [1 ]
Ho, Chris Jun Hui [2 ]
Aw, Junxin [1 ]
Attia, Amalina Binte Ebrahim [2 ]
Mu, Jing [1 ]
Wang, Yu [3 ]
Wang, Xiaoyong [4 ]
Wang, Yong [5 ]
Liu, Xiaogang [3 ,6 ]
Chen, Huabing [5 ]
Gao, Mingyuan [5 ]
Chen, Xiaoyuan [4 ]
Yeow, Edwin K. L. [1 ]
Liu, Gang [4 ]
Olivo, Malini [2 ]
Xing, Bengang [1 ,6 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] ASTAR, Singapore Bioimaging Consortium, Singapore 138667, Singapore
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Xiamen Univ, State Key Lab Mol Vaccinol & Mol Diagnost, Ctr Mol Imaging & Translat Med, Sch Publ Hlth, Xiamen 361102, Peoples R China
[5] Soochow Univ, Sch Radiat Med & Protect, Suzhou 215123, Peoples R China
[6] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
中国国家自然科学基金;
关键词
UP-CONVERSION NANOPARTICLES; PHOTODYNAMIC THERAPY; DELIVERY; NANOMATERIALS; LUMINESCENCE; STRATEGIES; CHEMISTRY; MODALITY;
D O I
10.1038/ncomms10432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas. Upon tumour-specific cathepsin protease reactions, the cleavage of peptides induces covalent cross-linking between the exposed cysteine and 2-cyanobenzothiazole on neighbouring particles, thus triggering the accumulation of UCNs into tumour site. Such enzyme-triggered cross-linking of UCNs leads to enhanced upconversion emission upon 808 nm laser irradiation, and in turn amplifies the singlet oxygen generation from the photosensitizers attached on UCNs. Importantly, this design enables remarkable tumour inhibition through either intratumoral UCNs injection or intravenous injection of nanoparticles modified with the targeting ligand. Our strategy may provide a multimodality solution for effective molecular sensing and site-specific tumour treatment.
引用
收藏
页数:9
相关论文
共 45 条
  • [1] A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer
    Ai, Fujin
    Ju, Qiang
    Zhang, Xiaoman
    Chen, Xian
    Wang, Feng
    Zhu, Guangyu
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [3] A holistic approach to targeting disease with polymeric nanoparticles
    Cheng, Christopher J.
    Tietjen, Gregory T.
    Saucier-Sawyer, Jennifer K.
    Saltzman, W. Mark
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2015, 14 (04) : 239 - 247
  • [4] Nanoparticle therapeutics: an emerging treatment modality for cancer
    Davis, Mark E.
    Chen, Zhuo
    Shin, Dong M.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) : 771 - 782
  • [5] Deng RR, 2015, NAT NANOTECHNOL, V10, P237, DOI [10.1038/nnano.2014.317, 10.1038/NNANO.2014.317]
  • [6] Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications
    Feng, Wei
    Zhu, Xingjun
    Li, Fuyou
    [J]. NPG ASIA MATERIALS, 2013, 5 : e75 - e75
  • [7] Imaging enzyme-triggered self-assembly of small molecules inside live cells
    Gao, Yuan
    Shi, Junfeng
    Yuan, Dan
    Xu, Bing
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [8] Drivers of biodiagnostic development
    Giljohann, David A.
    Mirkin, Chad A.
    [J]. NATURE, 2009, 462 (7272) : 461 - 464
  • [9] Chemical reporters for biological discovery
    Grammel, Markus
    Hang, Howard C.
    [J]. NATURE CHEMICAL BIOLOGY, 2013, 9 (08) : 475 - 484
  • [10] Haun JB, 2010, NAT NANOTECHNOL, V5, P660, DOI [10.1038/NNANO.2010.148, 10.1038/nnano.2010.148]