Measurements of anisotropic thermoelectric properties in superlattices

被引:123
作者
Yang, B
Liu, WL
Liu, JL
Wang, KL
Chen, G [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1063/1.1515876
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermoelectric properties, i.e., thermal conductivity, electrical conductivity, and the Seebeck coefficient, have been measured in the directions parallel (in-plane) and perpendicular to the interface of an n-type Si(80 Angstrom)/Ge(20 Angstrom) superlattice. A two-wire 3omega method is employed to measure the in-plane and cross-plane thermal conductivities. The cross-plane Seebeck coefficient is deduced by using a differential measurement between the superlattice and reference samples and the cross-plane electrical conductivity is determined through a modified transmission-line method. The in-plane thermal conductivity of the Si/Ge superlattice is 5-6 times higher than the cross-plane one, and the electrical conductivity shows a similar anisotropy. The anisotropy of the Seebeck coefficients is smaller in comparison to electrical and thermal conductivities in the temperature range from 150 to 300 K. However, the cross-plane Seebeck coefficient rises faster with increasing temperature than that of the in-plane direction. (C) 2002 American Institute of Physics.
引用
收藏
页码:3588 / 3590
页数:3
相关论文
共 28 条
[1]  
ASCHROFT NW, 1976, SOLID STATE PHYSICS
[2]  
BALANDIN A, 1999, P 18 INT C THERM ICT, P23
[3]   PbTe based superlattice structures with high thermoelectric efficiency [J].
Beyer, H ;
Nurnus, J ;
Böttner, H ;
Lambrecht, A ;
Roch, T ;
Bauer, G .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1216-1218
[4]   Thermoelectric properties of anisotropic semiconductors [J].
Bies, WE ;
Radtke, RJ ;
Ehrenreich, H ;
Runge, E .
PHYSICAL REVIEW B, 2002, 65 (08) :1-8
[5]   Thermal conductivity of symmetrically strained Si/Ge superlattices [J].
Borca-Tasciuc, T ;
Liu, WL ;
Liu, JL ;
Zeng, TF ;
Song, DW ;
Moore, CD ;
Chen, G ;
Wang, KL ;
Goorsky, MS ;
Radetic, T ;
Gronsky, R ;
Koga, T ;
Dresselhaus, MS .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (03) :199-206
[6]   Theory of thermoelectric power factor in quantum well and quantum wire superlattices [J].
Broido, DA ;
Reinecke, TL .
PHYSICAL REVIEW B, 2001, 64 (04)
[7]   Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J].
Capinski, WS ;
Maris, HJ ;
Ruf, T ;
Cardona, M ;
Ploog, K ;
Katzer, DS .
PHYSICAL REVIEW B, 1999, 59 (12) :8105-8113
[8]   Thermoelectric property characterization of low-dimensional structures [J].
Chen, G ;
Yang, B ;
Liu, WL ;
Borca-Tasciuc, T ;
Song, D ;
Achimov, D ;
Dresselhaus, MS ;
Liu, JL ;
Wang, K .
TWENTIETH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2001, :30-34
[9]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[10]   SiGeC/Si superlattice microcoolers [J].
Fan, XF ;
Zeng, GH ;
LaBounty, C ;
Bowers, JE ;
Croke, E ;
Ahn, CC ;
Huxtable, S ;
Majumdar, A ;
Shakouri, A .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1580-1582