On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of p-adic strings

被引:3
作者
Khachatryan, Kh A. [1 ,2 ,3 ]
Petrosyan, H. S. [1 ,4 ]
机构
[1] Lomonosov Moscow State Univ, 1 Leninskiye Gory,GSP-1, Moscow 119991, Russia
[2] Yerevan State Univ, 1 Alex Manoogian Ul, Yerevan 0025, Armenia
[3] Natl Acad Sci Republ Armenia, 24-5 Marshal Baghramyan Pr, Yerevan 0019, Armenia
[4] Armenian Natl Agr Univ, 74 Ul Teryana, Yerevan 0009, Armenia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2020年 / 16卷 / 04期
关键词
boundary value problem; convexity; continuity; summability; monotonicity; solution limit; SOLVABILITY; EQUATIONS;
D O I
10.21638/11701/spbu10.2020.407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article considers a boundary value problem for a class of singular integral equations with an almost total-difference kernel and convex nonlinearity on the positive half-line. This problem arises in the dynamic theory of p-adic open-closed strings. It is proved that any non-negative and bounded solution of a given boundary value problem is a continuous function and the difference between the limit and the solution is itself an integrable function on the positive half-line. For a particular case, it is proved that the solution is a monotonically non-decreasing function. A uniqueness theorem is established in the class of non-negative and bounded functions. At the conclusion of the article, a specific applied example of this boundary problem is given.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 50 条
[21]   NONTRIVIAL SYMMETRIC SOLUTION OF A NONLINEAR SECOND-ORDER THREE-POINT BOUNDARY VALUE PROBLEM [J].
Sun, Yongping .
MISKOLC MATHEMATICAL NOTES, 2009, 10 (01) :97-106
[22]   On the solvability of a nonlinear boundary value problem arising in the theory of growing cell populations [J].
Latrach, K ;
Taoudi, MA ;
Zeghal, A .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (08) :991-1006
[23]   Solvability of fractional boundary value problem with p-Laplacian via critical point theory [J].
Chen, Taiyong ;
Liu, Wenbin .
BOUNDARY VALUE PROBLEMS, 2016,
[24]   Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem [J].
I. Merzoug ;
A. Guezane-Lakoud ;
R. Khaldi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 :1099-1106
[25]   Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem [J].
Merzoug, I. ;
Guezane-Lakoud, A. ;
Khaldi, R. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) :1099-1106
[26]   An Existence of an Isolated Solution to Nonlinear Two-Point Boundary Value Problem with Parameter [J].
B. B. Minglibayeva ;
A. T. Assanova .
Lobachevskii Journal of Mathematics, 2021, 42 :587-597
[27]   The upper and lower solution method for nonlinear fourth-order boundary value problem [J].
El-Haffaf, Amir .
DYNAMIC DAYS SOUTH AMERICA 2010: INTERNATIONAL CONFERENCE ON CHAOS AND NONLINEAR DYNAMICS, 2011, 285
[28]   An Existence of an Isolated Solution to Nonlinear Two-Point Boundary Value Problem with Parameter [J].
Minglibayeva, B. B. ;
Assanova, A. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (03) :587-597
[29]   SECOND ORDER NONLINEAR BOUNDARY VALUE SOLUTION FOR RELATIVE MOTION USING VOLTERRA THEORY [J].
Newman, Brett ;
Lovell, T. Alan .
SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 :2151-2172
[30]   Theory of electromagnetic drying: An asymptotic solution of an initial-boundary value problem for a cylinder [J].
Afanas'ev, A. M. ;
Siplivyi, B. N. .
THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2014, 48 (02) :206-211