Improved pollution forecasting hybrid algorithms based on the ensemble method

被引:40
作者
Liu, Hui [1 ]
Xu, Yinan [1 ]
Chen, Chao [1 ]
机构
[1] Cent S Univ, IAIR, Key Lab Traff Safety Track, Minist Educ,Sch Traff & Transportat Engn, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Urban fine particle concentration forecasting; Hybrid forecasting model; Stacking ensemble method; AIR-QUALITY INDEX; LEARNING-PARADIGM; EWT DECOMPOSITION; MODEL; PM2.5; PM10; PREDICTION; REGRESSION; GWO;
D O I
10.1016/j.apm.2019.04.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a new fine particle concentrations forecasting model, the Hampel identifier outlier correction preprocessing detects and corrects the outliers in the original series. Empirical wavelet transform method decomposes the corrected series into a set of subseries adaptively, and each subseries are used to train the Stacking ensemble method. In the Stacking ensemble forecasting method, the outlier robust extreme learning machine meta-learner combines different Elman neural network base learners and outputs the forecasting results of different subseries. Different forecasting subseries are combined and then reconstructed by inverse empirical wavelet transform reconstruction method to get the final forecasting fine particle concentrations results. It has been proved in the study that the model proposed in the study has better accuracy and wide applicability comparing to the existing models. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:473 / 486
页数:14
相关论文
共 32 条
[1]   Unsupervised real-time anomaly detection for streaming data [J].
Ahmad, Subutai ;
Lavin, Alexander ;
Purdy, Scott ;
Agha, Zuha .
NEUROCOMPUTING, 2017, 262 :134-147
[2]   Recursive neural network model for analysis and forecast of PM10 and PM2.5 [J].
Biancofiore, Fabio ;
Busilacchio, Marcella ;
Verdecchia, Marco ;
Tomassetti, Barbara ;
Aruffo, Eleonora ;
Bianco, Sebastiano ;
Di Tommaso, Sinibaldo ;
Colangeli, Carlo ;
Rosatelli, Gianluigi ;
Di Carlo, Piero .
ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (04) :652-659
[3]   Optimization of Statistical Methodologies for Anomaly Detection in Gas Turbine Dynamic Time Series [J].
Ceschini, Giuseppe Fabio ;
Gatta, Nicolo ;
Venturini, Mauro ;
Hubauer, Thomas ;
Murarasu, Alin .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (03)
[4]   Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis [J].
Chen, Yuanyuan ;
Shi, Runhe ;
Shu, Shijie ;
Gao, Wei .
ATMOSPHERIC ENVIRONMENT, 2013, 74 :346-359
[5]   Variational Mode Decomposition [J].
Dragomiretskiy, Konstantin ;
Zosso, Dominique .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) :531-544
[6]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[7]   Forecasting PM10 in metropolitan areas: Efficacy of neural networks [J].
Fernando, H. J. S. ;
Mammarella, M. C. ;
Grandoni, G. ;
Fedele, P. ;
Di Marco, R. ;
Dimitrova, R. ;
Hyde, P. .
ENVIRONMENTAL POLLUTION, 2012, 163 :62-67
[8]   A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration [J].
Gan, Kai ;
Sun, Shaolong ;
Wang, Shouyang ;
Wei, Yunjie .
ATMOSPHERIC POLLUTION RESEARCH, 2018, 9 (06) :989-999
[9]   Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area [J].
Gao, Meng ;
Guttikunda, Sarath K. ;
Carmichael, Gregory R. ;
Wang, Yuesi ;
Liu, Zirui ;
Stanier, Charles O. ;
Saide, Pablo E. ;
Yu, Man .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 511 :553-561
[10]   A dynamic evaluation framework for ambient air pollution monitoring [J].
Li, Ranran ;
Dong, Yuqi ;
Zhu, Zhijie ;
Li, Chen ;
Yang, Hufang .
APPLIED MATHEMATICAL MODELLING, 2019, 65 :52-71