CFD-PBM Simulation of Bubble Columns: Sensitivity Analysis of the Nondrag Forces

被引:20
作者
Zhang, Xi-Bao [1 ]
Yan, Wei-Cheng [2 ]
Luo, Zheng-Hong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Dept Chem Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GAS-LIQUID FLOW; POPULATION BALANCE; TURBULENCE MODELS; NUMERICAL-SIMULATION; INTERFACIAL FORCES; INTERPHASE FORCES; SIZE DISTRIBUTION; 2-PHASE FLOW; AIR-WATER; COALESCENCE;
D O I
10.1021/acs.iecr.0c02759
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, the effect of nondrag forces (lift force, turbulent dispersion force, wall lubrication force, and virtual mass force) and bubble-induced turbulence (BIT) on the computational fluid dynamics-population balance model (CFD-PBM) simulation of air-water bubble columns operated at 0.01, 0.05, 0.10, 0.11, and 0.23 m/s is investigated. The simulation results indicate that the local gas holdup, axial liquid velocity, global bubble size distribution (BSD), and global Sauter mean diameter are significantly affected by the lift force. Without the lift force, the radial profiles of gas holdup become flatter and the global Sauter mean diameter becomes smaller. The accuracy of simulation results can be improved by considering the lift force. The turbulent dispersion force has a large impact on the local gas holdup. Comparatively, the effect of the wall lubrication force, virtual mass force, and BIT on simulation results is small.
引用
收藏
页码:18674 / 18682
页数:9
相关论文
共 45 条
[1]  
[Anonymous], 1991, Turbulent Bubbly Flow in a Triangular Duct
[2]   Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns [J].
Bannari, Rachid ;
Kerdouss, Fouzi ;
Selma, Brahim ;
Bannari, Abdelfettah ;
Proulx, Pierre .
COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (12) :3224-3237
[3]   Computational Fluid-Dynamic modeling of the pseudo-homogeneous flow regime in large-scale bubble columns [J].
Besagni, Giorgio ;
Inzoli, Fabio ;
Ziegenhein, Thomas ;
Lucas, Dirk .
CHEMICAL ENGINEERING SCIENCE, 2017, 160 :144-160
[4]   CFD simulation of bubble columns incorporating population balance modeling [J].
Bhole, M. R. ;
Joshi, J. B. ;
Ramkrishna, D. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (08) :2267-2282
[5]  
Burns A.D, 2004, 5 INT C MULT FLOW IC
[6]   Gas holdup distributions in large-diameter bubble columns measured by computed tomography [J].
Chen, JW ;
Gupta, P ;
Degaleesan, S ;
Al-Dahhan, MH ;
Dudukovic, MP ;
Toseland, BA .
FLOW MEASUREMENT AND INSTRUMENTATION, 1998, 9 (02) :91-101
[7]   Numerical simulation of the gas-liquid flow in a laboratory scale bubble column Influence of bubble size distribution and non-drag forces [J].
Diaz, M. Elena ;
Iranzo, Alfredo ;
Cuadra, Daniel ;
Barbero, Ruben ;
Montes, Francisco J. ;
Galan, Miguel A. .
CHEMICAL ENGINEERING JOURNAL, 2008, 139 (02) :363-379
[8]   Two-Phase CFD Model of the Bubble-Driven Flow in the Molten Electrolyte Layer of a Hall-Heroult Aluminum Cell [J].
Feng, Yuqing ;
Schwarz, M. Philip ;
Yang, William ;
Cooksey, Mark .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2015, 46 (04) :1959-1981
[9]   Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes [J].
Frank, Th. ;
Zwart, P. J. ;
Krepper, E. ;
Prasser, H. -M. ;
Lucas, D. .
NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (03) :647-659
[10]  
GRACE JR, 1976, T I CHEM ENG-LOND, V54, P167