Molecular characteristic of treatment failure clinical isolates of Leishmania major

被引:7
作者
Eslami, Gilda [1 ]
Hatefi, Samira [2 ,3 ]
Ramezani, Vahid [3 ,4 ]
Tohidfar, Masoud [5 ]
Churkina, Tatyana, V [6 ,7 ]
Orlov, Yuriy L. [6 ,7 ,8 ]
Hosseini, Saeedeh Sadat [2 ]
Boozhmehrani, Mohammad Javad [1 ]
Vakili, Mohammad [9 ]
机构
[1] Shahid Sadoughi Univ Med Sci, Sch Med, Dept Parasitol & Mycol, Yazd, Iran
[2] Shahid Sadoughi Univ Med Sci, Res Ctr Food Hyg & Safety, Sch Publ Hlth, Yazd, Iran
[3] Shahid Sadoughi Univ Med Sci, Sch Pharm, Dept Pharmaceut, Yazd, Iran
[4] Shahid Sadoughi Univ Med Sci, Pharmaceut Res Ctr, Sch Pharm, Yazd, Iran
[5] Shahid Beheshti Univ, Fac Life Sci & Biotechnol, Dept Biotechnol, Tehran, Iran
[6] Inst Cytol & Genet SB RAS, Novosibirsk, Russia
[7] Novosibirsk State Univ, Novosibirsk, Russia
[8] IM Sechenov First Moscow State Med Univ, Sechenov Univ, Digital Hlth Inst, Moscow, Russia
[9] Shahid Sadoughi Univ Med Sci, Hlth Monitoring Res Ctr, Sch Med, Dept Community & Prevent Med, Yazd, Iran
关键词
Leishmania; Parasitology; Leishmaniasis; Clinical isolates; Minicircle kDNA; COXII; Treatment failure; Phylogenetic analysis; Gene expression; AQUAGLYCEROPORIN AQP1 GENE; CUTANEOUS LEISHMANIASIS; ORNITHINE-DECARBOXYLASE; DRUG-RESISTANCE; IN-VITRO; IDENTIFICATION; INFANTUM; TRANSPORTER; DIAGNOSIS; TIME;
D O I
10.7717/peerj.10969
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Leishmaniasis is a prevalent tropical disease caused by more than 20 Leishmania species (Protozoa, Kinetoplastida and Trypanosomatidae). Among different clinical forms of the disease, cutaneous leishmaniasis is the most common form, with an annual 0.6-1 million new cases reported worldwide. This disease's standard treatment is pentavalent antimonial (Sb-V) that have been used successfully since the first half of the 20th century as a first-line drug. However, treatment failure is an increasing problem that is persistently reported from endemic areas. It is important to define and standardize tests for drug resistance in cutaneous leishmaniasis. SbV must be reduced to its trivalent active form (Sb-III). This reduction occurs within the host macrophage, and the resultant Sb-III enters amastigotes via the aquaglyceroporin1 (AQP1) membrane carrier. Overexpression of AQP1 results in hypersensitivity of the parasites to Sb-III, but resistant phenotypes accompany reduced expression, inactivation mutations, or deletion of AQP1. Hence, in this study, a phylogenetic analysis using barcode gene COXII and kDNA minicircle and expression analysis of AQP1 were performed in treatment failure isolates to assess the isolates' molecular characteristics and to verify possible association with drug response. Methods: Samples in this study were collected from patients with cutaneous leishmaniasis referred to the Diagnosis Laboratory Center in Isfahan Province, Iran, from October 2017 to December 2019. Among them, five isolates (code numbers 1-5) were categorized as treatment failures. The PCR amplification of barcode gene COXII and kDNA minicircle were done and subsequently analyzed using MEGA (10.0.5) to perform phylogenetics analysis of Treatment failures (TF) and Treatment response (TR) samples. Relative quantification of the AQP1 gene expression of TF and TR samples was assessed by real-time PCR. Results: All samples were classified as L. major. No amplification failure was observed in the cases of barcode gene COXII and kDNA minicircle amplification. Having excluded the sequences with complete homology using maximum parsimony with the Bootstrap 500 method, four major groups were detected to perform phylogenetic analysis using COXII. The phylogenetic analysis using the barcode target of minicircle showed that all five treatment failure isolates were grouped in a separate sub-clade. Conclusions: We concluded that the barcode gene COXII and the minicircle kDNA were suitable for identification, differentiation and phylogenetic analysis in treatment failure clinical isolates of Leishmania major. Also, AQP1 gene expression analyses showed that treatment failure isolates had less expression than TR isolates. The isolate with TF and overexpression of the AQP1 gene of other molecular mechanisms such as overexpression of ATP-binding cassette may be involved in the TR, such as overexpression of ATP-binding cassette which requires further research.
引用
收藏
页数:16
相关论文
共 56 条
[1]  
Aghai-Maybodi M, 2018, J ISFAHAN MED SCH, V36, P1261, DOI [10.22122/jims.v36i500.10297.2, DOI 10.22122/JIMS.V36I500.10297.2]
[2]   J-binding protein 1 and J-binding protein 2 expression in clinical Leishmania major no response-antimonial isolates [J].
Ahmadian S. ;
Eslami G. ;
Fatahi A. ;
Hosseini S.S. ;
Vakili M. ;
Ajamein Fahadan V. ;
Elloumi M. .
Journal of Parasitic Diseases, 2019, 43 (1) :39-45
[3]   War diseases revealed by the social media: massive leishmaniasis outbreak in the Syrian Spring [J].
Alasaad, Samer .
PARASITES & VECTORS, 2013, 6
[4]   Revisiting leishmaniasis in the time of war: the Syrian conflict and the Lebanese outbreak [J].
Alawieh, Ali ;
Musharrafieh, Umayya ;
Jaber, Amani ;
Berry, Atika ;
Ghosn, Nada ;
Bizri, Abdul Rahman .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2014, 29 :115-119
[5]  
Alijani Y, 2019, J ARTHROPOD-BORNE DI, V13, P145
[6]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[7]  
[Anonymous], 2018, Neglected Tropical Diseases
[8]  
Bravo F., 2018, Dermatology, V4th, P1470
[9]   Leishmaniasis [J].
Burza, Sakib ;
Croft, Simon L. ;
Boelaert, Marleen .
LANCET, 2018, 392 (10151) :951-970
[10]   Species delimitation and phylogenetic relationships of Chinese Leishmania isolates reexamined using kinetoplast cytochrome oxidase II gene sequences [J].
Cao, De-Ping ;
Guo, Xian-Guang ;
Chen, Da-Li ;
Chen, Jian-Ping .
PARASITOLOGY RESEARCH, 2011, 109 (01) :163-173