The Principal Element of a Frobenius Lie Algebra

被引:11
作者
Gerstenhaber, Murray [1 ]
Giaquinto, Anthony [2 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Loyola Univ, Dept Math & Stat, Chicago, IL 60626 USA
关键词
Frobenius Lie algebra; deformations; INDEX;
D O I
10.1007/s11005-009-0321-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of the principal element of a Frobenius Lie algebra f. The principal element corresponds to a choice of F is an element of f* such that F[-, -] non- degenerate. In many natural instances, the principal element is shown to be semisimple, and when associated to sl(n), its eigenvalues are integers and are independent of F. For certain "small" functionals F, a simple construction is given which readily yields the principal element. When applied to the first maximal parabolic subalgebra of sl(n), the principal element coincides with semisimple element of the principal three-dimensional subalgebra. We also show that Frobenius algebras are stable under deformation.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1982, Funct. Anal. Appl, DOI [DOI 10.1007/BF01077870, 10.1007/BF01077870]
[2]  
Dergachev V, 2000, J LIE THEORY, V10, P331
[3]  
ELASHVILI AG, INDEX PARABOLIC SUBA
[4]  
ELASHVILI AG, 1978, T MAT I AKAD NAUK GE, V52, P33
[5]   Boundary solutions of the classical Yang-Baxter equation [J].
Gerstenhaber, M ;
Giaquinto, A .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (04) :337-353
[6]  
GERSTENHABER M, 2008, ARXIV08082423V1 MATH
[7]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R
[8]   On semi-invariants and index for biparabolic (seaweed) algebras, I [J].
Joseph, Anthony .
JOURNAL OF ALGEBRA, 2006, 305 (01) :487-515
[10]   LIE-ALGEBRAS WITH PRIMITIVE ENVELOPES, SUPPLEMENTS [J].
OOMS, AI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) :67-72