The Holometer: an instrument to probe Planckian quantum geometry

被引:32
作者
Chou, Aaron [1 ]
Glass, Henry [1 ]
Gustafson, H. Richard [2 ]
Hogan, Craig [1 ,3 ]
Kamai, Brittany L. [1 ,3 ,4 ]
Kwon, Ohkyung [5 ]
Lanza, Robert [6 ]
McCuller, Lee [6 ]
Meyer, Stephan S. [3 ]
Richardson, Jonathan [2 ,3 ]
Stoughton, Chris [1 ]
Tomlin, Ray [1 ]
Weiss, Rainer [6 ]
机构
[1] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Univ Chicago, Chicago, IL 60637 USA
[4] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA
[5] Korea Adv Inst Sci & Technol, Seoul, South Korea
[6] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
interferometry; laser interferometers; spectral responses; spectral coherence; FOURIER-TRANSFORM; INTERFEROMETRY; ABSORPTION;
D O I
10.1088/1361-6382/aa5e5c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper describes the Fermilab Holometer, an instrument for measuring correlations of position variations over a four-dimensional volume of space-time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. A noise model constrained by diagnostic and environmental data distinguishes among physical origins of measured correlations, and is used to verify shot-noise-limited performance. These features allow searches for exotic quantum correlations that depart from classical trajectories at spacelike separations, with a strain noise power spectral density sensitivity smaller than the Planck time. The Holometer in current and future configurations is projected to provide precision tests of a wide class of models of quantum geometry at the Planck scale, beyond those already constrained by currently operating gravitational wave observatories.
引用
收藏
页数:48
相关论文
共 26 条
[1]   Gravitational radiation detection with laser interferometry [J].
Adhikari, Rana X. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :121-151
[2]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[3]   An introduction to Pound-Drever-Hall laser frequency stabilization [J].
Black, ED .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) :79-87
[4]  
Broquedis Francois, 2010, PDP 2010 THE 18 EUR
[5]   First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers [J].
Chou, Aaron S. ;
Gustafson, Richard ;
Hogan, Craig ;
Kamai, Brittany ;
Kwon, Ohkyung ;
Lanza, Robert ;
McCuller, Lee ;
Meyer, Stephan S. ;
Richardson, Jonathan ;
Stoughton, Chris ;
Tomlin, Raymond ;
Waldman, Samuel ;
Weiss, Rainer .
PHYSICAL REVIEW LETTERS, 2016, 117 (11)
[6]   THE EXPERIMENTAL PHYSICS AND INDUSTRIAL CONTROL-SYSTEM ARCHITECTURE - PAST, PRESENT, AND FUTURE [J].
DALESIO, LR ;
HILL, JO ;
KRAIMER, M ;
LEWIS, S ;
MURRAY, D ;
HUNT, S ;
WATSON, W ;
CLAUSEN, M ;
DALESIO, J .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 352 (1-2) :179-184
[7]   STRING THEORY MODIFIES QUANTUM-MECHANICS [J].
ELLIS, J ;
MAVROMATOS, NE ;
NANOPOULOS, DV .
PHYSICS LETTERS B, 1992, 293 (1-2) :37-48
[8]  
Evans Jr K, 2006, MEDM REFERENCE MANUA
[9]  
Flanagan E., 1994, LIGOT94006300R
[10]   Frequency-domain interferometer simulation with higher-order spatial modes [J].
Freise, A ;
Heinzel, G ;
Lück, H ;
Schilling, R ;
Willke, B ;
Danzmann, K .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S1067-S1074