A Scientist's Guide to Buying a 3D Printer: How to Choose the Right Printer for Your Laboratory

被引:70
作者
Tully, Joshua J. [1 ]
Meloni, Gabriel N. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
基金
欧盟地平线“2020”;
关键词
3D-PRINTED ELECTROCHEMICAL SENSORS; CHEMISTRY; MICROFLUIDICS; REACTIONWARE; FABRICATION; HEALTH;
D O I
10.1021/acs.analchem.0c03299
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The use of 3D printing in research and teaching has significantly grown in the past years and has had a major impact on scientific practices. Despite the growing adoption driven by ever decreasing printer prices, the barrier to entry for 3D printing in research laboratories is still high due to the lack of basic reference material targeted at the scientific community. In this Feature, we introduce 3D printing as a tool for use in research laboratories, bridging the gap between scientists and 3D printing technology. This is not another 3D printing review but rather a guide which will help scientists to recognize the usefulness of 3D printing and to make an informed buying decision on their first 3D printer.
引用
收藏
页码:14853 / 14860
页数:8
相关论文
共 52 条
[1]   3D-printed electrochemical sensors: A new horizon for measurement of biomolecules [J].
Abdalla, Aya ;
Patel, Bhavik Anil .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 20 :78-81
[2]  
Adams Anngela, 2018, J Diabetes Sci Technol, V12, P176, DOI 10.1177/1932296817715272
[3]   3D printing for aqueous and non-aqueous redox flow batteries [J].
Ambrosi, Adriano ;
Webster, Richard D. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 20 :28-35
[4]  
Bártolo PJ, 2011, STEREOLITHOGRAPHY: MATERIALS, PROCESSES AND APPLICATIONS, P37, DOI 10.1007/978-0-387-92904-0_2
[5]   Addressing Hazardous Implications of Additive Manufacturing Complementing Life Cycle Assessment with a Framework for Evaluating Direct Human Health and Environmental Impacts [J].
Bours, Justin ;
Adzima, Brian ;
Gladwin, Susan ;
Cabral, Julia ;
Mau, Serena .
JOURNAL OF INDUSTRIAL ECOLOGY, 2017, 21 :S25-S36
[6]   3D-Printed electrodes for membraneless water electrolysis [J].
Bui, Justin C. ;
Davis, Jonathan T. ;
Esposito, Daniel V. .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (01) :213-225
[7]   3D printing for chemical, pharmaceutical and biological applications [J].
Capel, Andrew J. ;
Rimington, Rowan P. ;
Lewis, Mark P. ;
Christie, Steven D. R. .
NATURE REVIEWS CHEMISTRY, 2018, 2 (12) :422-436
[8]   Additive-manufactured (3D-printed) electrochemical sensors: A critical review [J].
Cardoso, Rafael M. ;
Kalinke, Cristiane ;
Rocha, Raquel G. ;
dos Santos, Pamyla L. ;
Rocha, Diego P. ;
Oliveira, Paulo R. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2020, 1118 :73-91
[9]   3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids [J].
Cardoso, Rafael M. ;
Silva, Pablo R. L. ;
Lima, Ana P. ;
Rocha, Diego P. ;
Oliveira, Thiago C. ;
do Prado, Thiago M. ;
Fava, Elson L. ;
Fatibello-Filho, Orlando ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 307
[10]   3D printing for electroanalysis: From multiuse electrochemical cells to sensors [J].
Cardoso, Rafael M. ;
Mendonca, Dianderson M. H. ;
Silva, Weberson P. ;
Silva, Murilo N. T. ;
Nossol, Edson ;
da Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2018, 1033 :49-57